Leaderboard


Popular Content

Showing content with the highest reputation since 05/13/2020 in Articles

  1. 2 points
    Have you ever realised that you feel something is not right in the system and something must be done about it? The question is how many times you did something to improve things…..? Avoidable Fatalities The purpose of Education in Skydiving and Rigging is to facilitate learning. Nothing else! All things learned are important and often vital to the skydiver- our sequence emergency procedures, wrong decisions under pressure and improperly done maintenance and repairs can end in disaster and they have. If there is any other interests involved in the education system- the process is ineffective. Also there is a difference between education in skydiving and public schools. If students in public education are to experience the result from what they learned in school or college years after graduation, skydiving students will need what they learned literally the same or the next day. A study was carried out by Hart, Christian L. and Griffith, James D. (2003) "Human Error: The Principal Cause of Skydiving Fatalities". Here are a couple of points: “Of the 308 fatalities that were reported between 1993-2001, 264 (86%) were categorized as Human Error, indicating that human error was deemed to be the principal causal factor in the mishaps. The remaining 44 (14%) fatalities were categorized as Other Factors, indicating that human error did not play a principal role in those mishaps. Therefore, human error appears to be the principal causal factors in the great majority of skydiving fatalities. Within skydiving training and education programs, specific attention should be given to human error, and training should be deliberately aimed at reducing human error mishaps. In the design of parachuting equipment, attention should be given to designing systems that increase skydiver situation awareness and increase the probability of correctly carrying out deployment and emergency procedure while under stress and time pressure.” I find it unacceptable that in the 21st Century with the level of science and experience in the sport we have 86 percent fatalities that have resulted from avoidable mistakes. In skydiving, critical situations require making correct decisions and executing proper action. This causes increases in pressure and cognitive load, beyond the state of flow that impairs our ability. When the cognitive load increases, our limited cognitive capacity is exceeded and we become overloaded. Our brains cannot process the large volumes of information being generated by the situation and we can fail to make accurate decisions. Example is tandem bag lock malfunction- requires very fast thinking, change of standard emergency procedures, reaction and execution when RSL is connected. However, if RSL is not connected- things are way easier- action is as usual- cutaway and reserve deployment. This is just an example where correct training can significantly reduce the pressure or lead to positive outcome. Knowing that there is direct connection between the previous training taken and how the skydiver would react under pressure is vital. Namely our gut feeling is what determines our reactions under pressure and lack of time. It all happens simultaneously before we put everything in words. So someone that has never used RSL as a backup system would go first for the reserve handle after cutaway and will almost never check for main risers clearance. In the late 80’s and 90’s of the last century, there were significant discoveries in phycology that explain a lot how and why humans make certain decisions under pressure. Unfortunately skydive training still has not caught up with psychology. Mirror neurons is one of these discoveries. For example, neurons in our brain fire symmetrically to match our instructor’s emotions. So, if the instructor is very positive, enthusiastic and smiling, about 20-30% of the neurons in the same area in the student’s brain, responsible for these emotions fire as well. The result is that students assume that if the instructor is that positively charged- everything must be in order. It is the same when the instructor looks negative, unhelpful, concerned- the student is experiencing a grade of freeze, flight response and the performance goes down. This is just a generalisation but it explains why students love enthusiastic instructors, regardless how competent they are. However, students also can identify incompetence hidden in positive attitude. There is also an explanation for that recently discovered. In this article, I will try to scratch the surface on training. Combining psychology and training in skydiving is going to be part of a different publication. In skydiving we have two types of Education- Safety education and skills improvement training. They overlap and mix all the time but they stay different things. Example is the training during the new skills courses- initial AFF, Tandem and AFF Instructor certifications. They all have two parts- the Safety part, which teaches the student/candidate/ how to survive the skydive with the new equipment and procedures and the Skills improvement part- how to do it well. This is very important since decision making is heavily influenced by the level of competence and skills in these separate areas. Both, the student and the teacher/instructor/ should know where they stand in that- at what stage of the training and learning process they are. Even more, the training for a particular skill must match the psychological reasons influencing how the student will react in this situation. It’s important to know why people make fatal mistakes and how to avoid them- you never know when a simple flight back to the landing area can turn into a situation that requires emergency procedures. Approaching Education Differently Looks like education in skydiving suffers from a bit of amnesia! It is based on the industrialised system of education. This system came out during the industrial revolution and it was designed to serve the needs of the manufacturing process- to produce a workforce that follows algorithms. Basically, it’s a system that tells you how to do things, without much explaining. The student is instructed not thought. This all works well when in the manufacturing! And we have all seen the big emergency procedures charts that look like wiring diagrams like they are designed for a computer processors to follow. However, people are not machines but organic creatures and in addition they have to make their own decisions under pressure. Industrialised system is based on standardisation and conformity! It is true that these principles are a must in skydiving and they define the skills necessary for surviving the skydive with- must know, must do and must not do. But there must be a clear line where they begin and finish because any irrelevant and wrong information or negative emotions significantly affect the decision making process. The fact that a student does not understand what causes our bodies to turn in freefall creates negative emotions and can cause them to fail the stage. Conformity and standardisation also contradict the principles on which skydiving and life for that matter have flourished over the years- diversity and creativity. Every single person is different. Not a single person’s life is the same as anybody else’s. There’s no two persons on this planet that are the same. So why skydiving training is standardised to that extent? One of the results is that year after year there’s a great amount of people that give up skydiving after they get their A licence. And the reason is that they don’t want to spend a long time and a lot of money doing relative work with B rels. Most of the students started skydiving because they wanted to do something else- usually freeflying or swooping. There is a great amount of students that never complete the AFF course as well. If a private company was losing such an enormous amount of their clients every year, they would say- “Maybe it’s not the customers, maybe it’s something we do”. If equipment and training courses were put under the compatibility lid some time ago, they would never advance more than the static line course and round military parachute stage! People are also curious and creative. They want to learn. Everyone knows that students and instructors start their career with a great amount of curiosity and want to learn and keep this going forever. Curiosity is the engine of achievement. One of the effects of the current culture, has been to de-professionalise instructors. There is no system in the world that is better than it’s instructors. Instructors are the lifeblood of the success of drop zones, but teaching is a creative profession. Teaching, properly conceived, is not a delivery system. Instructors should not be there just to pass on received information. Great instructors do that, but what great teachers also do is mentor, stimulate, provoke, and engage. Another big problem with the industrial based system is that it never covers everything that we need to know because it is based on what has happened so far. Especially in recent years, it presents you with a list or diagrams with possible situations. What happens if you get into situations that are not on the list?! Then you need creativity! A good example is the tandem fatality resulted from a turn initiated at about 200ft and the control line and toggle got hooked on the disconnected side passenger connector. The tandem pair entered into a continuous diving turn. The tandem instructor ran through the given emergency procedures diagram but there was nothing for this particular situation. The most he could think of was- cutaway and deploy reserve. Unfortunately it was too low. However, there were at least two solutions in this case that were not on the diagram- cut the break line and try landing with risers or counter the turn with the other toggle and land on deep brakes. Compliance in this situation didn’t equal safety but provided a false sense of safety. Situations like this require some creativity or divergent thinking. And we use divergent thinking all the time in skydiving- when we exit and fly different tandem clients, when different aircraft changes the inflight procedures, when tailoring the stage for a particular AFF Student, when packing reserves or repairing equipment etc. “Divergent thinking is a thought process or method used to generate creative ideas by exploring many possible solutions. It typically occurs in a spontaneous, free-flowing, "non-linear" manner, such that many ideas are generated in an emergent cognitive fashion. Many possible solutions are explored in a short amount of time, and unexpected connections are drawn.” There is another system of education, which is based on reasoning, where cause and effect are the significant element. This is the system to which we owe the development in skydiving and skydiving equipment- people trying different things and improving the ones that work. With this system, understanding how and why things happen is the driving force. That’s how basic military parachutes were improved for sport parachuting to get to the current state of the art canopies and harness containers. This is how we all got where we are now. With this system, the student’s safety and progression are the important thing, not the standard of “pass or fail” and the learning process can be tailored so the students can learn effectively. In this system both- student and instructor are aware of the level of competence /unconscious incompetent, conscious incompetent, conscious competent, unconscious competent/ the student is in. Right now there are thousands of consciously incompetent skydivers and instructors about their own equipment but they are expected to deal with extraordinary situations with competence. They simply do not know how their reserve system or components exactly work and what potential problems they can cause them. As a result, these licenced skydivers are not ready to deal with a number of issues. If you knew that if the Cypres fires in head position and the reserve might hesitate, how materials and body position affect the reserve openings, what the reserve pilot chute is, etc. you would consider your actions. The level of competence/competence- confidence loop/ directly affects the performance and decision making in every situation- challenging or threatening. The more competent you are with equipment and situations, the more pressure is reduced and it is easier to make decisions. All this is not that new and there is wonderful work done by instructors and dropzones. However, it is happening not because of the current standardisation and command and control culture but despite it. Yes, sometimes habit is stronger than reason, but reason always prevails eventually. Maybe it’s time the available knowledge in the 21-st century about learning, training, psychology and the connection between them to be implemented accordingly. While doing that, some accidents could be prevented. After all, skydivers are organic creatures and parachutes are just mechanical systems operated by skydivers. Nothing magical happens up there! The magic we feel is only in our heads! --------------------------------------- K.B Jumps - 25 000+ AFF, Tandem Instructor, Freefall Photographer Rigger- FAA all types, APF Rigger Examiner Master of teaching, Biology and Chemistry
  2. 2 points
    When first learning to skydive, at least in the US, you attend a first jump course (FJC) that usually lasts between four and five hours on the ground, then you go up in a plane and jump. There are several methods of instruction including Accelerated Free Fall (AFF), Instructor Assisted Deployment (IAD), Static Line (SL), or a combination of the three called the Integrated Student Program (ISP). While all of these methods of instructions are different, they all have one thing in common: gravity. You have to land your parachute. This is where the PLF comes into play. It is also where numerous accidents happen, sometimes due to sliding in, rather than doing a PLF. This is understandable, since tandem pairs land this way for safety reasons. Besides standing up the landings (the preferred method), this is the landings students see most often. When skydiving first began, all of the equipment was military surplus. This included round canopies, so naturally the PLF was brought along as the safest way to land. Over time, and thanks to the innovation of early pioneers of the sport, the equipment evolved into the square (and now elliptical) canopy, which brought its own problems, like needing a slider to control the opening, and also alleviated the issue with hard landings, mostly. Now, rather than falling more or less wherever the wind blew you, you could steer and fly the canopy much the same as a glider, since the canopy is now a pressurized wing. When you want to land, you fly a landing pattern and pull both steering toggles down and flare, much the same as an airplane would by using flaps. This allows you to bleed off forward speed and land softly standing up (theoretically). Like all things skydiving, when it works, it works really well, but when it doesn't work, it can kill you. I was a skydiver before going airborne, so when it came time to learn how to PLF, I thought I had an advantage since I had been taught how. Boy was I wrong. They had a platform you climbed on and rode a zip line to gain forward speed and then you let go to learn how to PLF in a simulated landing. I could not keep my feet together, so the Blackhat (instructor) tied my boots together. I had to hop around all day, but I have not had a problem keeping my feet together since. In airborne school, they take two weeks to train you how to jump out of planes compared to five hours in skydiving. Most of that time is preparing you to land. As there is no way to steer the round canopy other than slipping on landing (pulling the risers to go sideways a little) or facing into the wind, and no way to flare or slow down the speed, the PLF is needed to prevent injury. I have seen a jumper fall about 50 feet and do a PLF and walk away with a few bruises. While I understand that time is limited and it is hard to prepare a student for all possibilities, I feel that more time should be spent on PLFs during the FJC, at least an hour, and that students should do at least five correct PLFs before every jump. This is standard procedure before doing an airborne jump, and includes all jumpers being led through the entire jump by a jumpmaster, including their emergency procedures. If we put every student through this before every day of jumping, it would help prevent injuries. The reason students choose to slide in rather than PLF is observation. Since this is the way a tandem pair lands in order to prevent injury, it is assumed to be safe. It is, when properly taught. It is easier to injure yourself sliding in or trying to run out a landing than doing a PLF. I know of at least two serious injuries sustained sliding in that a proper PLF would have prevented. One case ended with a cage around the lower vertebrae. I made a jump at an unfamiliar DZ on rental gear and the winds were a little high, about 15 mph, so I ended up landing long. When I turned on final, there were some power lines in front of me and I was headed straight for them. I turned around and did a downwind landing, and a PLF into the hard-as-a-rock, newly plowed field, ending up with some scratches when I landed. I was going about 20 mph forward speed. Had I slid in or tried to run it out, I would most likely have broken something. Another time I jumped at an unfamiliar DZ, I chose to PLF instead of running it out, and while walking back stepped in a gopher hole. Had I hit that while running out the landing, I would have broken my ankle. A proper PLF has five points of contact: the balls of the feet, calf, thigh, buttock, and pull-up muscle (deltoid). When you prepare to hit the ground, keep your feet and knees together, slightly bent, in preparation to absorb the impact. When you fall, hit all the points of contact in order, while rolling on the ground. A proper PLF will allow you to absorb all of the energy and dissipate it by rolling, rather than staying stiff and breaking bones or tearing ligaments and tendons. I kick my feet together when approaching my landing to ensure my feet are together and knees bent, ready to hit the ground and roll. That way, if I don't bleed off enough speed to land standing up, I am already prepared to roll and do it without thinking. If I am going slowly enough, I have a nice stand up landing. Although the goal is standing it up, it is best to be prepared for a PLF, especially if you are fond of your ankles and spine. Blue skies. Article written by @sfzombie13
  3. 1 point
    Luxfly, Tunnel Tech and the Mighty Braffs It seems like tunnels are popping up everywhere, doesn’t it? As a dyed-in-the-wool aficionado of all vertically-oriented wind, this can hardly have escaped your notice. Another thing that hasn’t escaped your notice, we’re willing to bet, is that none of these tunnels have popped up within a lunch-break drive of your fine abode. Wanna do something about that? Well: As it turns out, you can. And you can do it even if you’re not personally made of money. Want proof? Meet Steve Braff, a true tunnel-building dynamo. He and his wife/business partner, Magali share a deeper history in windytubes than pretty much anyone on the planet -- and now, they’re building Luxfly, the most exciting indoor skydiving wind tunnel project in Europe, using the brand-newest, top-of-the-line-est technology to do so (Tunnel Tech, to be specific -- but we’ll get to that later). Suffice it to say: The Braffs are a good example to follow. Currently, Steve and Magali -- collectively known as their vertical wind tunnel consulting business, Starfly -- are keeping busy not just with Luxfly, but with .other tunnels around the world. As a point of note, Starfly is utterly unique -- Steve and Magali are the only people in the world who do this kind of work, helping others to build tunnels. Outside of Starfly, there are two industry operators: the customers, who want to have and operate tunnels, and the tunnel manufacturers, who want to sell vertical wind tunnel technology. Until Starfly, there’s been no one in between to smooth the steep, bumpy road to a grand opening. Pretty in pink “Right now, we have five projects in process,” he says. “But it varies. Sometimes, we help people out with optimizing their existing tunnels; sometimes, we help them start projects, or assist them in different phases. We work with a group of investors to which we propose our projects. The specific investors depend on the location and the host country. People who want to build tunnels can work with us at every stage. We can do it from A to the end.” “Since I was a kid, my dream was always to fly like Superman,” Steve grins. “And that was the only thing I ever wanted to do.” Steve started skydiving at 21 years old. He’s celebrating his 23rd year in the sport this year, with around 8,000 skydives, a thousand BASE jumps -- and, very importantly, lots and lots of hours in the windytube. “I was always interested in the tunnel flying industry,” he explains. “It always amazed me, what people were doing in there.” For a very long time, Steve funded his freefall habit by working at the family company: importing Italian coffee into the Braffs’ native Belgium. One day, after 15 years of working side-by-side with his brother, mom, sister and dad, he decided it was time for a change. “I said: You know what, I think I'm going to quit,” he laughs, “And sell air. So I did.” “There’s enough money around the world to serve everyone who wants to invest,” he insists. “The issue is that there aren’t enough ideas, or the people with the willingness to push them. When somebody tells me they’ve been trying [to get a tunnel started] for two years and they can’t seem to get the money together, I just tell them they need to push harder. Never give up. It only depends on you. The money is there, and you’ll unlock it if you try.” Tunnel Tech airducts with Hubble-level surface precision and finishing Steve doesn’t want you to think that he’s under the impression that it’s easy to convince someone to invest in something as big as a tunnel. The price tag of a windytube is plenty high for a project that most humans have only seen, occasionally, on TV. “You need to transfer your passion to the investor,” he advises. “If you are capable of doing this, then you’re already doing great work on the investment. Even if you have a business plan and you can prove with paperwork that your wind tunnel is going to make a lot of money -- super nice presentations and Excel sheets and all the trimmings -- you still need to make your potential investors believe in it with their hearts. If they don't believe in it with their hearts, they will not invest.” “Think about it,” he continues. “You’re asking them to invest millions of Euros in a building with wind blowing at 200 kilometers per hour through the walls. It is crazy. We still run into this all the time when we go to new contractors. Why all of this for a flight chamber? Why all of that construction around it? They don't understand.” In 2006, after one false start at a Belgian dropzone, that decision took Steve and Magali to create a truly watershed moment in what the rest of the world knows as “indoor skydiving.” Inspired by the idea that training in the vertical wind tunnel could revolutionize skydiving -- at the time, a very new and unorthodox philosophy -- the pair decided to build the very first vertical wind tunnel facility in Belgium. It was called AirSpace and it was, in a word, visionary. “I am a big fan of Apple, and their thing was always to think different,” Steve explains. “And that resonates with us, because it’s really the way we live. We are always trying to improve and make stuff differently; not to be just another tunnel. Our tunnel was a huge success because of that, and because we wanted to do everything we could for the for the flyers.” Steve and Magali built “their” tunnel from scratch. To do so, they quit everything else in their lives to focus full-time on creating the facility -- including their home. “My wife and myself, we decided we were going to go full on,” he smiles. “We wanted to know everything -- every bolt, every detail -- about our tunnel, and about the industry. So we left our rented house and moved into the contractor container on the construction site. We lived in it for a year. It was a really nice experience, day by day following the progress of construction.” Steve and Magali Braff Though ‘home’ was technically a shipping container for the Braffs that year, the heart of the idea behind that tunnel -- and, now, LuxFly -- was, charmingly, to make it into as homey a place as possible. The Braffs integrated a cozy lounge bar; as much wood as possible, moving away from the stainless-and-plastic aesthetic that pervaded (and still pervades) the vertical wind tunnel oeuvre; a deep sense of comfort and place. “We were insistent that it had to be like a house,” Steve says. “I wanted people to come in and walk around in their bare feet. When I saw that for the first time, it felt like success to me.” The year it took to build AirSpace -- still fast for a tunnel project, which is normally it is two years from the point of financing, securing building permits and organizing all the construction to the grand opening -- taught Steve and Magali a boatload. “Sure, it was a lot of ups and downs -- a lot of them -- more downs than ups, okay -- but, at a certain point, you have to look at it a bit like the stock market,” he explains. “You need to be patient and you need to keep believing in it. That is your only source of strength. Not depending on anyone. It's yourself; your own belief.” The tunnel truly bloomed under the Braffs’ management. This is one couple, however, that doesn’t make a habit of resting on laurels, no matter how comfortable they might be. After a few years, they decided to sell it and move on. It felt like time to grapple with another project (this time, on the border with Luxembourg), and to start helping other would-be tunnel owners with their own projects. “We earned a lot of experience over the course of all those years,” Steve says. “We traveled a lot, both skydiving and tunnel flying. We have seen a lot of wind tunnels. We took all those ideas we discovered over the years and we put them into in Luxfly. It's going to be super, super, super special.” According to Steve, Luxfly is going to be “the 2020 version of tunnel flying.” The design aesthetic -- still a secret, as of publication -- promises to be groundbreaking. The pair decided to make another, perhaps even bigger change: a total technology rethink. While AirSpace used top-of-the-line-at-the-time German tech (ISG), the Braffs decided to build Luxfly with Tunnel Tech, a multinational vertical wind tunnel technology company that’s making huge strides forward in safety and efficiency. “I must say [Tunnel Tech] have blown us away with the quality of their product,” Steve explains. “First of all, I’ve known Slava, the CEO, for many years. When I heard he was making his own technology -- and that they were building a 15-foot with less power consumption than a 14-foot -- I got very curious. Then I started following their projects in Japan, in Moscow and in Korea, and I was totally convinced.” The LuxFly structure & the Tunnel Tech machine are ready for assembly “It was a risk, of course, because it’s a new company, and it always feels safer to go with a company that has built 15 tunnels versus somebody that has built three,” he continues. “But that’s our history. With Airspace, for example, I think we were the fourth ISG tunnel; perhaps the fifth. So being the fourth Tunnel Tech wind tunnel doesn’t feel so crazy. Tunnel Tech really are rethinking every part of the tunnel -- how we can do better, better and better -- contrasts a lot with where now a lot of manufacturers are now. When you have a certain design that's working and selling, the tendency is to just keep it until people demand something new. Tunnel Tech keeps well out in front of that.” With Luxfly’s gala grand opening set for the end of January, Steve and Magali are up to their eyeballs in preparations. They insist, however, that they are always available to help people out -- to make new tunnel dreams a reality. “We are passionate people,” he smiles. “We just want to share our love of flying.”
  4. 1 point
    Not wearing earplugs on every skydive? Hear me out (while you still can): It’s pretty damn important to add a pair to your every-jump kit, and your excuses probably don’t hold up to expert scrutiny. What expert? A lofty one. Last week, I got to talk to Dr. Anna Hicks* at length about the thorny matter of skydiving with a cold (watch the February issue of Parachutist for that one). At one point, our conversation took a slight diversion towards hearing damage. The content of that more than deserves its own moment in the sun: Our delicate soundholes, and the damage we don’t have to do them. So: Why aren’t you wearing earplugs on every jump? 1. Because it’s not that big a deal. If you like listening to things other than phantom roaring, then sorry. It kinda is. Each of us is born with 15,000 sound-sensing cells per ear. (I like to think of ‘em as magical hearing hair, because that’s kinda what they look like.) Hearing loss occurs when they die. It’s not just noise exposure that kills them; certain medications and other environmental factors and do it, too, but those are freak deaths by comparison. Once they’re gone, they’re gone. Birds, fish, and amphibians have the ability to grow back magical hearing hair. Mammals, like your average skydiver, lack the ability to regenerate these cells. All we can do is stick in a hearing aid and hope for the best. You don’t have to take my word for it. Talk to anybody who suffers from tinnitus and ask them if they’d have taken precautions to prevent it. 2. Because I don’t jump that much. Dr. Hicks begs to differ. “I see so many skydivers that have damaged their hearing,” she notes. “Even if you’re just doing 100 jumps a year, every time you jump, the engine is noisy, and the freefall is noisy, too. Over your skydiving career, that adds up to a lot of noise exposure.” “I still find some people that can’t be bothered with ear plugs even in the wind tunnel,” she adds, “but our hearing is too important not to take ten seconds to put them in every time. You don’t want to end up not able to hear your friend at the pub because you knackered your hearing from too much noise exposure.”** 3. Wearing earplugs in freefall is dangerous. If it’s not just laziness that’s keeping you from protecting your hearing, it might be a misplaced sense of safety. Dr. Hicks wears hers from ground to ground, and she recommends that you do too, even if it’s just on the way up to altitude. “I am a big advocate with any patient I see,” she says, “especially those whose job is skydiving, to wear ear plugs at least on the way up and ideally on the way down as well. Earplugs do not prevent situational awareness, stop you from being able to talk to your students, or to hear shouts under canopy. You can hear what you need to hear, usually you can actually hear your audible altimeter better because the background freefall crackle is reduced, and vitally, [wearing earplugs] reduces the longer-term damage we can experience from our sport.” Some people discover that they find a problem equalizing if they have earplugs in on the way down. Dr. Hicks’ advice: If equalizing is a problem for you, try using the vented plugs (which you can buy from a pharmacy for a few dollars) to better equalize during descent. 4. I can’t afford the nice ones and the foam ones cause ear infections. According to Dr. Hicks, that is not a thing. As long as the plugs are rated, they’ll provide the protection you need. “You can wear posh ear plugs or the cheap foam ones like you get in the tunnel,” she says. “Either-or.” According to a study of sixty long-range patrol-aircraft crew members, the idea that disposable foam earplugs cause ear infections is a total myth. The crew members were randomly divided into three groups: one wearing fancy custom-molded earplugs, the second using foam earplugs that they washed after each use, and the third group using foam earplugs washed only once per week. The study lasted eight weeks and included examinations by a medical officer as well as skin scrapings for bacterial culture and fungal examinations. The results indicated no fungal infections or clinically significant bacterial infections, and no differences in positive bacterial culture between the groups. Moral of the story: roll ‘em up and stick ‘em in. They’re going to prevent a heck of a lot more damage than they could possibly cause, and 50-year-old you (who doesn’t have to have the TV on FULL BLAST ALL THE TIME) will thank you. *Dr. Hicks is a certified badass. An active-duty Aviation Medicine specialist in the British Regular Army, she has logged more than 4,000 jumps over 15 years in the sport, many of which as the Outside Center for the multi-medaled British 4-way team NFTO. Dr. Hicks is also a British Parachute Association Accelerated Freefall Instructor and formation skydiving coach, as well as a Skydiving Instructor at Britain’s legendary Skydive Netheravon. Oh: and she was Tom Cruise’s personal aviation doc during the filming of the latest Mission: Impossible reboot. ‘Nuff said. **Confused? Ask a British person for a translation.
  5. 1 point
    While I was an S+TA, I spent a considerable amount of time telling people they shouldn't be loading their canopies so heavily. 90% of the time it didn't work. Skydivers can have a bit of an ego, and when I told them they probably shouldn't downsize yet they heard "I think you're a crappy canopy pilot who can't handle a smaller wing." So they downsized and broke their legs, backs and pelvises with some regularity. A few years back I met up with Brett, one of the people I'd been lecturing to whle I was an S+TA. He told me that he wished he'd listened to me back then. He had broken his femur during a botched landing, been out of the sport for a while, and then came back and really learned to fly his canopy. He took a canopy control course and actually upsized to get more performance out of his canopy. He ended up coming in first in one of the events at the PST that year. That started me thinking. Maybe the approach I was taking was wrong. Since jumpers tend not to listen to other people who tell them they're not as good as they think they are, perhaps if you could give them better tools to evaluate themselves they could make better decisions about canopy choices. It's one thing to have some boring S+TA guy give you a lecture about not having any fun under canopy, quite another to try to perform a needed manuever under canopy - and fail. In that case there's no one telling you you can't fly the canopy, it's just blatantly obvious. So I came up with a list of canopy control skills everyone should have before downsizing. Some are survival skills - being able to flat turn would have saved half a dozen people this year alone. Some are canopy familiarization skills - being able to do a gentle front riser approach teaches you how to judge altitude and speed at low altitudes, and how to fly a parachute flying faster than its trim airspeed, a critical skill for swooping. It's important to do these BEFORE you downsize, because some manuevers are a little scary (turning at 50 feet? Yikes!) and you want to be on a larger canopy you're completely comfortable with before trying such a thing. The short version of the list is below. Before people downsize, they should be able to: flat turn 90 degrees at 50 feet flare turn at least 45 degrees land crosswind and in no wind land reliably within a 10 meter circle initiate a high performance landing with double front risers and front riser turn to landing land on slight uphills and downhills land with rear risers Details: 1. Flat turn 90 degrees at 50 feet.This is the most important of all the skills. The objective of this manuever is to change your direction 90 degrees losing as little altitude as possible, and come out of the manuever at normal flying speed. Coming out at normal flying speed means you can instantly flare and get a normal landing. If you can do this at 50 feet, and come out of the manuever with normal flying speed at 5 feet, you can flare and land normally. Every year people die because they decide they simply have to turn at 100 feet and know only one way to do it - pull down a toggle. The parachute dives and they hit the ground at 40mph. To prevent this, not only do you have to know how to flat turn, but you have to practice it enough that it becomes second nature. Then when you do need it, you won't have to think about it. To pull off this manuever, start by toggle turning the parachute gently. IMMEDIATELY follow that with some opposite toggle. The idea is that you want to flare just a little to counteract the canopy's desire to dive. Continue adding opposite toggle until you've stopped the turn. At this point let both toggles all the way up. If you feel the parachute accelerate after you let go of the toggles (i.e. it feels like you just flared) use less opposite toggle next time. If you feel like the parachute is diving, like you just did a toggle turn, use more opposite toggle next time. Basically you want to start the turn with one toggle, stop it with the other one, and use just enough toggle to keep the wing from diving but not so much that it does a flare. It should go without saying that this manuever should be practiced up high before you ever try it down low. If and when you do try it out low, start at lesser angles (i.e. try a 15 degree turn first) make sure the pattern is clear and make sure conditions are good (soft ground, good winds.) Work up gradually to a full 90 degree turn. I do think it's important to try at least a gentle flat turn very low; we are horrible judges of exact altitudes when we're at 1000 feet, and it's hard to tell if you've lost 50 feet or 200 in a turn. By trying it out down low, you'll get a better sense of what it can do for you, and you'll have the "sight picture" better set in case you have to use it for real one day. A variation on this is to go to half brakes and then let one brake up. This gives you a flat turn, but by flaring first you "use up" some of the canopy's energy so you can't turn as effectively. On the plus side the turn happens more slowly. If you are about to hit a tree and want to make a last minute turn, this variation might be the way to go, as it combines a turn and a flare, thus reducing your speed before impact. A version of this is currently taught in the ISP, so it might be a good way to make your first flat turns before transitioning to the less-braked variety. 2. Flare turn at least 45 degrees.This does two things - it gives you another tool in your arsenal to dodge last minute obstacles, and teaches you to fly your canopy all the way through to the landing. The #1 mistake jumpers with new HP canopies make is to "reach out to break their fall" while they're flaring; this of course turns the canopy in the direction they are reaching. Most people decide that this is due to a side gust just as they're landing. I remember one jumper at Brown who, amazingly enough, experienced a side gust seconds before he landed (and always from the right) 40-50 times in a row! Learning to flare turn will help eliminate this problem. To flare turn, start with a normal flare, then flare slightly more with one toggle. The canopy will turn. Bring the other toggle down to match it, and the canopy will straighten out. It's a dynamic process; rather than put the toggles at a certain position, you have to speed up one toggle for a second, then speed up the other to match it, before you level them and finish the flare. If you balloon upwards, then don't flare as quickly. If you drop to the ground, bring both toggles down more aggressively when they are 'split.' One thing that helps people is to think about where your canopy is rather than what it's doing. Use the toggles to put it off to one side for a moment, then use them to put it back over your head. This can be hard to practice with a large canopy. I can pull off a 45 degree turn on a Manta, but the flare is over so fast that it's hard to explain what I just did. It's much easier on a canopy loaded around 1:1, so you may want to wait on this one until you get to that loading. Note that if you combine a flare turn with a flat turn, you can pull off nearly a 180 degree turn at just above 50 feet. Also note that knowing how to do flat and flare turns doesn't mean you can always turn at 50 feet and get away with it - sometimes it's better to accept a downwind landing than make a turn at a dangerously low altitude. But if you do have to turn low (say, you're on course for the electrified fence around the pit bull farm) a flat/flare turn will let you either turn and land normally or turn and minimize the damage caused by landing in a turn. 3. Land crosswind and in no wind.These are straightforward. No wind landings are pretty easy; the only issue is that your perception of speed and altitude will be off. Since you seem to be moving faster over the ground when there's no wind (which you actually are) it can seem like a good idea to add just a little brake to 'slow you down' before you land. Resist that urge! Keep that speed in your canopy; you can turn the speed into a good flare only if you start the flare with decent (i.e. full flight) speed. Crosswind landings can be a little more tricky because of that strong tendency to want to "reach out to break your fall." Counter this by flaring with your hands in towards the center of your body. You may have to PLF on these landings, since you'll have some decent forward speed and have some sideways motion from the wind. If you want to get fancy, try a flare turn after you start your flare on the crosswind landing - you can easily pull off a standup landing if you get turned enough before you put your feet down. If these work well you may want to try a downwind landing. The benefit to doing that is it will prepare you to accept a downwind landing in the future; you won't be tempted to turn too low to avoid it. Choose an ideal day for this one, with a slippery landing area (wet grass is perfect) low winds and a clear landing area. Prepare to PLF, and think about "laying it down" on your thigh as you land to start sliding. You can slide across grass at 30mph without getting hurt, but planting your feet and cartwheeling at those speeds can be very dangerous. 4. Land reliably within a 10 meter circle.This is essentially the PRO requirement. This is critical because your accuracy skills are what will keep you from having to turn low. It's very comforting to know that you can land in any 50ish foot clearing if you find yourself having to land out; it's especially important as you get to smaller canopies that need longer and longer runways to land well. Your only option may be a section of road, and you may have to hit the beginning of the road dead-on to have enough room to slow down. The subject of canopy accuracy is too long to do justice to here, but the top 3 hints I've heard are: - If you're not sure if you're going to make it over a wire or tree, look at what it's doing with respect to the background. If more background is appearing from beneath the wire or tree, you're probably going to make it. - As you look at the ground, most points will seem to move away from a central point. Some will rise, some will fall, some will go out to the side. If you look long enough you'll find one point that's not moving - that's where you're going to land if the winds don't change all the way in (which is rare.) - Going into brakes usually makes you land short in high winds, but can extend your glide in no wind. Front risers almost always make you land shorter. 5. Initiate a high performance landing with double fronts, and a front riser turn to landing.I am pretty convinced that front riser high performance landings are a lot safer than toggle turn high performance landings, and double fronts are the safest of all. If you do it too low, or become worried about the landing - just drop the risers and you're back to normal flight. For double front riser landings, set up a normal landing, aiming for a point a little farther away than you normally do. At 100 feet or so, pull down both front risers. Your canopy will drop and accelerate. At some point above the ground (30-10 feet depending on your canopy) drop the front risers. Your canopy will begin to recover. Before it completes the recovery to normal flight, you should be at flare altitude. Start the flare normally. You may need to use less toggle than normal, since the canopy is now going faster than you're used to, and the same amount of toggle gives you more lift. You will also plane out farther, since you have more speed you have to bleed off before you come to a stop. For front riser turns to landing, first try front riser turns out above 1000 feet and get used to how your canopy recovers. Then start by coming in 10 degrees off the windline, and making a gentle front riser turn to line up with the wind at ~100 feet. The canopy will dive and accelerate, so be prepared to drop the front riser instantly and flare if you have to. Also be prepared to steer in the flare, since the canopy may not have stopped turning completely before the flare begins. Done correctly, you'll start the flare with more forward speed, giving you a longer planeout. Make sure your flares are smooth for this! A smooth flare generates more lift for a longer period of time than "stabbing" the brakes. However, don't start the flare at 30 feet - starting the flare that high will slow the canopy down, negating the effects of the front riser approach. If you do find yourself stabbing the brakes to prevent hitting the ground, move the altitude at which you start front risering up. Probably the most critical skill you will get from this exercise is the development of the "sight picture." Below 200 feet your altimeter is pretty useless, and you should be looking at traffic and the landing area anyway. Eventually you'll develop a sense of what "picture" you should see just before you start that riser turn. The picture will vary with wind, landing area etc. If you arrive at the point where you would normally start the front riser turn, and the picture's not right - abort it and land normally. Once you have the picture down, and are doing front riser turns that transition to gradual flares, then start increasing the angle. Once you get to 90 degrees you're going to be gaining a lot of speed, so be sure to adjust your sight picture up to compensate. As always, bail by dropping the risers if you feel like there's anything wrong. Once you drop the risers, level the wing with your toggles and prepare to flare. At worst you'll have to land crosswind - but that's a skill you should have by this point anyway. 6. Land on slight uphills and downhills.Often, land away from the DZ isn't perfectly flat; sometimes you can't tell this until you're at 20 feet. To prepare for this, find a place in your LZ that's not perfectly flat, scope it out, and plan on landing there. There's not too much magic concerning landing on a slope. You flare more aggressively to land going uphill, less aggressively to land going downhill. Obviously not all DZ's have slopes. If you don't have a good slope on your DZ somewhere, you may have to put this one off until you're at a DZ that does have one. Beaches are a good place to practice this, since they have pretty predictable slopes down to the water, and overrunning the landing just means you get wet. 7. Land with rear risers. Knowing how to land with rear risers can help you deal with a canopy problem like a broken or stuck brake line, and can help you make a better land/cutaway decision when you do have such a problem. Again, this is best practiced up high. See how far you can pull the rear risers before the canopy stalls. It will stall much earlier with rear risers; memorize where that happens so you don't do it near the ground. When you try it for real, choose an ideal day - steady moderate winds, soft ground, clear pattern. Be sure to try this for the first time on a largish canopy (one of the reasons you should do these things before downsizing.) Leave your hands in the toggles and wrap your whole hand around the rear riser. That way if things go awry you can drop the risers and flare normally. Start the flare at a normal flare altitude, and prepare to PLF. You may get the sort of lift you're used to, but you probably won't slow down as much before you're near that stall point. Make sure your feet are on the ground (sliding preferably) before you get there. On smaller canopies, you may want to start the flare with rear risers. Then, once the canopy is leveled out, drop the risers and finish the flare with the toggles (which are still around your hands.) That way you get your vertical speed to zero, which is the critical part of a safe slide-in landing, and can still stop the canopy without hitting the ground going too fast. (This is also a technique used by swoopers to extend their swoops BTW.) The above list is not meant to include all the skills you need to safely fly a canopy; it’s just a checklist for a cross-section of skills you should have before downsizing. Some of these will be easier on a larger canopy, and can be practiced right away. Landing downwind, for example, is easier on a larger canopy simply because it can slow you down more before stalling. Some skills are more difficult on a larger canopy. It can be difficult to get a planeout at all on a larger F-111 canopy, so practicing things like a flare turn may best wait until you approach a 1:1 loading on a ZP canopy. At that loading, the canopy begins to perform more along the lines of how we expect a HP canopy to fly. More importantly, skills like the flare turn become both possible and necessary to practice, so you can hone your skills while you are under a canopy that tolerates minor mistakes. As I mentioned in the beginning, these are skills you should learn before you downsize, although some (like the flare turn) can be difficult to practice at very light loadings. If you can't do some of them yet? Get some coaching; it makes a lot more sense to learn them on your larger canopy, before you start jumping a smaller canopy that scares you. Once you can do them all, then try the smaller canopy. And if someday someone cuts you off under the smaller canopy, you'll have the reactions you learned under the larger canopy. Even if you haven't completely adapted those manuevers to the smaller canopy yet, those reactions will more likely than not save your life.
  6. 1 point
    One of the most dreaded conditions of all is the no wind scenario. This fear is so profound that many jumpers in fact avoid jumping in no wind conditions. Although landing with the benefit of a headwind is unarguably easier, there are specific methods that markedly improve the chances of standing up your landing. Here are a few tips that will help you to land softer and safer when the wind goes away: 1) Make sure you level off within touching distance from the ground. If you finish the flight with some space between you and the earth, you will have more than just forward speed to deal with at the end of the landing. All parachutes stall above zero airspeed, which means that as soon as the extreme slow flight capability of your parachute is attained, it will drop you into the ground with both forward and vertical movement. The best way to deal with this is to be sure that you have already arrived at standing height when the stall breaks. That way, the only remaining kinetic energy is forward movement, which can be diminished by taking a few controlled steps. 2) Make sure your brakes are short enough. Most manufacturers set the brake lines to allow for a certain amount of slack so that when the front risers are applied with the toggles in the hands, there is no tail input. This, coupled with shorter risers (most parachutes are set up for 21 inch risers), will prevent you from reaching your parachute's slowest flying speed. With the help of your rigger, shortening the brake lines is an easy task. Take out not more than one inch at a time and give it a few jumps before taking more out. 3) Keep the parachute over your head. Any tilt in the roll axis will result in a premature stall of the parachute, which will drop you into the ground while you still have ground speed. This is due to an effect known as "load factor". When a wing is in a bank, it requires a bit of increased angle of attack to keep it flying at the same height or descent rate. This results in an increased relative weight, which in turn increases the stall speed. Keep your eyes looking down the "runway" and you will be able to notice variance in your bank angle easier. Making smooth corrections to the bank angle all the way to the end of the landing will result in a softer touch-down and less forward velocity at the end of the ride. 4) Be sure that you are finishing the flare. Keep smoothly adding brakes until you run out of arms, or ground-speed, whichever comes first. In other words, if you are flying into a significant head-wind, flaring all the way down will make you go backwards, as the speed of your parachute will be less than the speed of the wind. Flaring straight down is the only way to accomplish a complete flare, as stylish outward sweeping of the arms out to the sides or to the back will only result in a stylishly ineffective flare. The brake lines can only work if they are pulled. 5) Assuming that a PLF is not necessary, put one foot under your spine, as the "main landing gear", and the other out in front as the "nose gear". That way you will not plant both feet at the same time and pivot onto your face. Slide your main gear along the ground as long as you can, and then when the friction finally grabs your foot, take that first step onto the front foot. 6) Loosen your chest strap and lean forward in the harness. This will allow you to get your weight over your "landing gear", rather than back on your heels. The parachute will increase its pitch angle as you progress through the landing, but your body doesn't have to tilt in accordance. Freeing your body from the pitch of the system will allow you to feel more comfortable finishing the flare, as you will not feel the urge to let up on the toggles as you put your feet down to get to a more balanced pitch angle. 7) Let the wing sink down below standing height during the second half of the swoop, and then use the canopy's lift to bring you back up to standing height. Referred to as the "Seagull Landing", this allows you to arrest any excess forward speed, as you will be in a climb at the last part of the landing. Be sure not to climb above standing height as you do this, as that will result in a drop at the end that will put you on your face. 8) Practice slow flight up high. The more comfortable you are with the low-end range of your canopy's performance envelope, the longer you will be willing too keep your toggles down at the end. Fear of the stall results in incomplete flares, as well as letting up the toggles at the end of the landing. Keep the canopy in brakes for at least 30 seconds (up high), and perform smooth turns right and left. This will help you fly your way out of any bank angle created by an asymmetrical level off during the flare. 9) Believe it is possible to land perfectly. It is. Only when a pilot thinks: "I am going to crash" is the crash inevitable. 10) Get video! There is no greater tool than actually seeing yourself land. The best way to get filmed, I have found, is to film other people. Landing in no wind can be great fun. Ultimately, this is how we counter the fear of landing our parachutes. If you lean forward into the experience, your positive body language results in more fluid, appropriate actions that actually improve your situation. When you are comfortable with landing in no winds, you begin to actually look forward to those zero-wind sunset loads. Scooting across the ground with maximum forward speed can be incredibly enjoyable when you know you have the skills to handle the situation. In the end, the only way to achieve this is to jump on a regular basis, and enjoying the learning process is how this is reinforced. Find something about every landing that you can smile about, even your crashes. Everything that is not the path shows us where the path is not. Happy Landings! Bryan Germain www.CanopyFlightInstructor.com Editors Note: Also see - Another Look at No-Wind Landings by Scott Miller
  • Newsletter

    Want to keep up to date with all our latest news and information?
    Sign Up