Search the Community

Showing results for tags 'safety'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • General
    • Announcements
    • Introductions and Greets
  • Community
    • The Bonfire
    • Speakers Corner
  • Skydiving
    • General Skydiving Discussions
    • Questions and Answers
    • Gear and Rigging
    • Safety and Training
    • Events & Places to Jump
    • Skydiving History & Trivia
    • Instructors
    • Wind Tunnels
    • Tandem Skydiving
    • Skydivers with Disabilities
    • Blue Skies - In Memory Of
  • Skydiving Disciplines
    • Swooping and Canopy Control
    • Relative Work
    • Photography and Video
    • Freeflying
    • Canopy Relative Work
    • Wing Suit Flying
    • BASE Jumping
  • Dropzone.com
    • Suggestions and Feedback
    • Error and Bug Reports
    • Security and Scam Alerts

Calendars

  • Boogies
  • Competitions
  • Miscellaneous
  • Rating Courses
  • Training Camps

Categories

  • Angola
  • Argentina
  • Australia
  • Austria
  • Bahamas
  • Belarus
  • Belgium
  • Bermuda
  • Bolivia
  • Bosnia
  • Botswana
  • Brazil
  • Bulgaria
  • Canada
  • Chile
  • China
  • Colombia
  • Costa Rica
  • Cuba
  • Croatia
  • Cyprus
  • Czech Republic
  • Denmark
  • Dominican Republic
  • Egypt
  • El Salvador
  • Estonia
  • Finland
  • France
  • Guatemala
  • Germany
  • Greece
  • Hungary
  • Iceland
  • India
  • Indonesia
  • Iran
  • Iraq
  • Ireland
  • Israel
  • Italy
  • Jamaica
  • Japan
  • Jordan
  • Kenya
  • Latvia
  • Lithuania
  • Luxembourg
  • Macedonia
  • Malawi
  • Malaysia
  • Maldives
  • Malta
  • Mauritius
  • Mexico
  • Moldova
  • Montenegro
  • Morocco
  • Mozambique
  • New Zealand
  • Namibia
  • Netherlands
  • Norway
  • Pacific Islands
  • Panama
  • Papua New Guinea
  • Paraguay
  • Peru
  • Philippines
  • Poland
  • Portugal
  • Qatar
  • Romania
  • Russia
  • Saudi Arabia
  • Serbia
  • Singapore
  • Slovak Republic
  • Slovenia
  • South Africa
  • South Korea
  • Spain
  • Suriname
  • Sweden
  • Switzerland
  • Tanzania
  • Thailand
  • Turkey
  • Ukraine
  • United Arab Emirates
  • United States
  • United Kingdom
  • Uruguay
  • Venezuela
  • Vietnam
  • Zambia
  • Zimbabwe

Categories

  • Altimeters
  • AADs
  • Cameras
  • Containers
  • Helmets
  • Jumpsuits
  • Goggles
  • Main Canopies
  • Clothing
  • Reserve Canopies
  • Software
  • Wingsuits

Categories

  • Disciplines
  • Safety
  • News
  • Help
    • Account Help
    • Forums
    • Dropzone E-Mail
    • Dropzone Database
    • Photo Galleries
    • Premier Membership
    • Event Planner
    • Classifieds
    • Dropzone Locator
    • Security And Scams
    • Videos
    • Content
  • Advertise
  • General
  • Events
  • Gear

Categories

  • 2004
  • 2005
    • Africa
    • Asia
    • Europe
    • Middle East
    • North America
    • Pacific
    • South America
  • 2006
    • Africa
    • Asia
    • Europe
    • Middle East
    • North America
    • Pacific
    • South America
  • 2007
    • Africa
    • Asia
    • Europe
    • Middle East
    • North America
    • Pacific
    • South America
  • 2008
    • Africa
    • Europe
    • Middle East
    • North America
    • Pacific
    • South America
  • 2009
    • Africa
    • Asia
    • Europe
    • Middle East
    • North America
    • Pacific
    • South America
  • 2010
    • Africa
    • Asia
    • Europe
    • Middle East
    • North America
    • Pacific
    • South America
  • 2011
    • Africa
    • Asia
    • Europe
    • Middle East
    • North America
    • Pacific
    • South America
  • 2012
    • Africa
    • Asia
    • Europe
    • Middle East
    • Pacific
    • South America
    • North America
  • 2013
    • Africa
    • Asia
    • Europe
    • Middle East
    • North America
    • Pacific
    • South America
  • 2014
    • Africa
    • Asia
    • Europe
    • Middle East
    • North America
    • Pacific
    • South America
  • 2015
    • Africa
    • Asia
    • Europe
    • Middle East
    • North America
    • Pacific
    • South America
  • 2016
  • 2017
  • 2018
  • 2019

Categories

  • Aads
  • Altimeters
  • Containers
  • Helmets
  • Main Canopies
  • Reserve Canopies
  • Cameras
  • Wingsuits
  • Jumpsuits

Categories

  • Argentina
  • Australia
  • Austria
  • Belgium
  • Brazil
  • Bulgaria
  • Canada
  • China
  • Czech Republic
  • Denmark
  • Finland
  • France
  • Germany
  • Hungary
  • Israel
  • Iran
  • Italy
  • Japan
  • Korea
  • Latvia
  • Malaysia
  • Mexico
  • Netherlands
  • New Zealand
  • Norway
  • Poland
  • Russia
  • Sweden
  • Singapore
  • Slovakia
  • Slovenia
  • Spain
  • Switzerland
  • Ukraine
  • United Arab Emirates
  • United Kingdom
  • United States

Categories

  • Classifieds
  • Forums
  • Profile
  • Gallery
  • Calendar
  • Other

Categories

  • Files

Blogs

There are no results to display.

Product Groups

  • Advertisement
  • Dropzone Listings

Categories

  • AFF
  • BASE
  • Coaching
  • Compilations
  • CRW
  • Demos
  • Emergencies
  • Exits
  • Freeflying
  • Miscellaneous
  • Relative Work
  • Special Jumps
  • Tandem
  • Swooping
  • Wind Tunnel
  • Wingsuit
  • Skydive TV

Categories

  • Aads
  • Aircraft
  • Altimeters
  • Clothing And Jewelry
  • Complete Systems
  • Containers
  • Employment
  • Head Gear
  • Jumpsuits
  • Main Canopies
  • Miscellaneous
  • Photography
  • Reserve Canopies
  • Spare Parts
  • Tandem
  • Tunnel Time
  • Videos And Books
  • Wingsuits

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Facebook


Linked In


Twitter


Google Plus


Youtube


Vimeo


Instagram


Website


About Me


Ratings


Container Other


Main Canopy Size


Main Canopy Other


Reserve Canopy Size


Reserve Canopy Other


AAD


Home DZ


License


License Number


Licensing Organization


Number of Jumps

 
or  

Tunnel Hours

 
or  

Years in Sport

 
or  

First Choice Discipline


First Choice Discipline Jump Total

 
or  

Second Choice Discipline


Second Choice Discipline Jump Total

 
or  

Static Line


IAD


AFF


Tandem


Formation


Rigging Back


Rigging Chest


Rigging Seat


Rigging Lap

Found 179 results

  1. If you add a little pressure, simple things can quickly become not-simple things. For the amount that most of us understand about how they really work, the modern cameras we employ for skydiving are close enough as to be made of magic. Yet despite their tiny size, amazing quality and all-round wonderfulness - we still regularly miss out on capturing quality footage of a jump for the most arbitrary reasons. A little bit of forethought and the application of a simple routine can aid ones consistency when it comes to getting the shot. You may well snort derisively and roll your eyes at the thought of reading an article about how to switch a camera on - yet let you that has never missed a great bit of action for the sake of some small piece of angry-making bullshit stupidity cast the first stone. The best analogy I have to represent the advantages of a sensible and efficient method for a repeated process is think about packing and how much of a frustrating pain in the ass it was (be honest) at the start. Learning to pack and getting it right is not only about understanding the need to fold your parachute a certain way so it will go into your container (and come out again) - it is as much about the knowing right spot to put your knee so the fabric doesn’t escape and where to hold it down with your elbow so you can have both hands free for the next bit. How many things in your life are there to which you can draw parallels with this? There is much satisfaction to be found in developing your ability to get ready quickly and efficiently in the plane. Here are a few tips: The Plan:Adding things to your in-aircraft routine should not come at the expense of any of the stuff you have learned to do that makes you safe. If you are skipping over running through your drills because you are constantly fucking around with your camera you might forget them at the crucial moment - so don’t. Even in the speediest of flying machines you have time to do things both necessary and desirable, but always remember your priorities. Checking that your pilot chute is not hanging out is vastly more important than which recording mode you are in. Lenses:It is very easy to get some manner of obfuscating crap on your lens. Action cameras all have teensy little apertures onto which a single grubby fingerprint is enough to ruin your footage of the bestest jump ever and make you very sad. Condensation is very popular too - especially with big temperature changes from altitude to ground level. Moisture developing on (or even in) your camera during a jump is unavoidable but not cleaning it up before the next one definitely is. You should have a suitable cleaning cloth somewhere about your person - tucked away into the lining of your helmet is good as it makes it very difficult to bring one without the other. For extra points you can attach it to your helmet with some string, or you could even carry a spare one which you might magnanimously gift to some clothless boob and appear as a minor hero/enormous geek in front of like four people. Cutaway:More and more frequently dropzones are requiring that any helmet with a camera on is fitted with a cutaway system - which are available in many forms and levels of quality. The best idea is always invest in a good one that someone has made using science that will actually work rather than bodge something together yourself from that box of old skydiving bits you keep under your bed for no good reason. A worthy part of your pre-jump process is to give this a quick look and see if all is well, and that nothing has become worn or unseated that might result in no camera attached to your head and some cognitive dissonance about wether you can be bothered to scour the landscape looking for it. Using Time:For maximum sensible-ness you should perform your camera checks with enough time that you can fix potential problems without freaking either yourself or anyone else out if something is amiss. Realising on jump-run that your memory card is full or your lens is dirty is too late. If you had a spare thirty seconds you might be able to go into your settings and delete something to free up space, or give the front a quick clean - but not when everyone is already climbing out on the side of the plane and waiting for your ass. ConclusionBeing correctly prepared in a timely fashion is but one step in getting good footage, yet an important one. Felling relaxed and properly ready lends itself to nailing the jump, and the exact form of your personal routine will develop with time and practice. Stick to the plan, don’t bump your head on the way out and remember that you get what your head is pointing at, not just your eyes.
  2. billvon

    Downsizing Checklist

    While I was an S+TA, I spent a considerable amount of time telling people they shouldn't be loading their canopies so heavily. 90% of the time it didn't work. Skydivers can have a bit of an ego, and when I told them they probably shouldn't downsize yet they heard "I think you're a crappy canopy pilot who can't handle a smaller wing." So they downsized and broke their legs, backs and pelvises with some regularity. A few years back I met up with Brett, one of the people I'd been lecturing to whle I was an S+TA. He told me that he wished he'd listened to me back then. He had broken his femur during a botched landing, been out of the sport for a while, and then came back and really learned to fly his canopy. He took a canopy control course and actually upsized to get more performance out of his canopy. He ended up coming in first in one of the events at the PST that year. That started me thinking. Maybe the approach I was taking was wrong. Since jumpers tend not to listen to other people who tell them they're not as good as they think they are, perhaps if you could give them better tools to evaluate themselves they could make better decisions about canopy choices. It's one thing to have some boring S+TA guy give you a lecture about not having any fun under canopy, quite another to try to perform a needed manuever under canopy - and fail. In that case there's no one telling you you can't fly the canopy, it's just blatantly obvious. So I came up with a list of canopy control skills everyone should have before downsizing. Some are survival skills - being able to flat turn would have saved half a dozen people this year alone. Some are canopy familiarization skills - being able to do a gentle front riser approach teaches you how to judge altitude and speed at low altitudes, and how to fly a parachute flying faster than its trim airspeed, a critical skill for swooping. It's important to do these BEFORE you downsize, because some manuevers are a little scary (turning at 50 feet? Yikes!) and you want to be on a larger canopy you're completely comfortable with before trying such a thing. The short version of the list is below. Before people downsize, they should be able to: flat turn 90 degrees at 50 feet flare turn at least 45 degrees land crosswind and in no wind land reliably within a 10 meter circle initiate a high performance landing with double front risers and front riser turn to landing land on slight uphills and downhills land with rear risers Details: 1. Flat turn 90 degrees at 50 feet.This is the most important of all the skills. The objective of this manuever is to change your direction 90 degrees losing as little altitude as possible, and come out of the manuever at normal flying speed. Coming out at normal flying speed means you can instantly flare and get a normal landing. If you can do this at 50 feet, and come out of the manuever with normal flying speed at 5 feet, you can flare and land normally. Every year people die because they decide they simply have to turn at 100 feet and know only one way to do it - pull down a toggle. The parachute dives and they hit the ground at 40mph. To prevent this, not only do you have to know how to flat turn, but you have to practice it enough that it becomes second nature. Then when you do need it, you won't have to think about it. To pull off this manuever, start by toggle turning the parachute gently. IMMEDIATELY follow that with some opposite toggle. The idea is that you want to flare just a little to counteract the canopy's desire to dive. Continue adding opposite toggle until you've stopped the turn. At this point let both toggles all the way up. If you feel the parachute accelerate after you let go of the toggles (i.e. it feels like you just flared) use less opposite toggle next time. If you feel like the parachute is diving, like you just did a toggle turn, use more opposite toggle next time. Basically you want to start the turn with one toggle, stop it with the other one, and use just enough toggle to keep the wing from diving but not so much that it does a flare. It should go without saying that this manuever should be practiced up high before you ever try it down low. If and when you do try it out low, start at lesser angles (i.e. try a 15 degree turn first) make sure the pattern is clear and make sure conditions are good (soft ground, good winds.) Work up gradually to a full 90 degree turn. I do think it's important to try at least a gentle flat turn very low; we are horrible judges of exact altitudes when we're at 1000 feet, and it's hard to tell if you've lost 50 feet or 200 in a turn. By trying it out down low, you'll get a better sense of what it can do for you, and you'll have the "sight picture" better set in case you have to use it for real one day. A variation on this is to go to half brakes and then let one brake up. This gives you a flat turn, but by flaring first you "use up" some of the canopy's energy so you can't turn as effectively. On the plus side the turn happens more slowly. If you are about to hit a tree and want to make a last minute turn, this variation might be the way to go, as it combines a turn and a flare, thus reducing your speed before impact. A version of this is currently taught in the ISP, so it might be a good way to make your first flat turns before transitioning to the less-braked variety. 2. Flare turn at least 45 degrees.This does two things - it gives you another tool in your arsenal to dodge last minute obstacles, and teaches you to fly your canopy all the way through to the landing. The #1 mistake jumpers with new HP canopies make is to "reach out to break their fall" while they're flaring; this of course turns the canopy in the direction they are reaching. Most people decide that this is due to a side gust just as they're landing. I remember one jumper at Brown who, amazingly enough, experienced a side gust seconds before he landed (and always from the right) 40-50 times in a row! Learning to flare turn will help eliminate this problem. To flare turn, start with a normal flare, then flare slightly more with one toggle. The canopy will turn. Bring the other toggle down to match it, and the canopy will straighten out. It's a dynamic process; rather than put the toggles at a certain position, you have to speed up one toggle for a second, then speed up the other to match it, before you level them and finish the flare. If you balloon upwards, then don't flare as quickly. If you drop to the ground, bring both toggles down more aggressively when they are 'split.' One thing that helps people is to think about where your canopy is rather than what it's doing. Use the toggles to put it off to one side for a moment, then use them to put it back over your head. This can be hard to practice with a large canopy. I can pull off a 45 degree turn on a Manta, but the flare is over so fast that it's hard to explain what I just did. It's much easier on a canopy loaded around 1:1, so you may want to wait on this one until you get to that loading. Note that if you combine a flare turn with a flat turn, you can pull off nearly a 180 degree turn at just above 50 feet. Also note that knowing how to do flat and flare turns doesn't mean you can always turn at 50 feet and get away with it - sometimes it's better to accept a downwind landing than make a turn at a dangerously low altitude. But if you do have to turn low (say, you're on course for the electrified fence around the pit bull farm) a flat/flare turn will let you either turn and land normally or turn and minimize the damage caused by landing in a turn. 3. Land crosswind and in no wind.These are straightforward. No wind landings are pretty easy; the only issue is that your perception of speed and altitude will be off. Since you seem to be moving faster over the ground when there's no wind (which you actually are) it can seem like a good idea to add just a little brake to 'slow you down' before you land. Resist that urge! Keep that speed in your canopy; you can turn the speed into a good flare only if you start the flare with decent (i.e. full flight) speed. Crosswind landings can be a little more tricky because of that strong tendency to want to "reach out to break your fall." Counter this by flaring with your hands in towards the center of your body. You may have to PLF on these landings, since you'll have some decent forward speed and have some sideways motion from the wind. If you want to get fancy, try a flare turn after you start your flare on the crosswind landing - you can easily pull off a standup landing if you get turned enough before you put your feet down. If these work well you may want to try a downwind landing. The benefit to doing that is it will prepare you to accept a downwind landing in the future; you won't be tempted to turn too low to avoid it. Choose an ideal day for this one, with a slippery landing area (wet grass is perfect) low winds and a clear landing area. Prepare to PLF, and think about "laying it down" on your thigh as you land to start sliding. You can slide across grass at 30mph without getting hurt, but planting your feet and cartwheeling at those speeds can be very dangerous. 4. Land reliably within a 10 meter circle.This is essentially the PRO requirement. This is critical because your accuracy skills are what will keep you from having to turn low. It's very comforting to know that you can land in any 50ish foot clearing if you find yourself having to land out; it's especially important as you get to smaller canopies that need longer and longer runways to land well. Your only option may be a section of road, and you may have to hit the beginning of the road dead-on to have enough room to slow down. The subject of canopy accuracy is too long to do justice to here, but the top 3 hints I've heard are: - If you're not sure if you're going to make it over a wire or tree, look at what it's doing with respect to the background. If more background is appearing from beneath the wire or tree, you're probably going to make it. - As you look at the ground, most points will seem to move away from a central point. Some will rise, some will fall, some will go out to the side. If you look long enough you'll find one point that's not moving - that's where you're going to land if the winds don't change all the way in (which is rare.) - Going into brakes usually makes you land short in high winds, but can extend your glide in no wind. Front risers almost always make you land shorter. 5. Initiate a high performance landing with double fronts, and a front riser turn to landing.I am pretty convinced that front riser high performance landings are a lot safer than toggle turn high performance landings, and double fronts are the safest of all. If you do it too low, or become worried about the landing - just drop the risers and you're back to normal flight. For double front riser landings, set up a normal landing, aiming for a point a little farther away than you normally do. At 100 feet or so, pull down both front risers. Your canopy will drop and accelerate. At some point above the ground (30-10 feet depending on your canopy) drop the front risers. Your canopy will begin to recover. Before it completes the recovery to normal flight, you should be at flare altitude. Start the flare normally. You may need to use less toggle than normal, since the canopy is now going faster than you're used to, and the same amount of toggle gives you more lift. You will also plane out farther, since you have more speed you have to bleed off before you come to a stop. For front riser turns to landing, first try front riser turns out above 1000 feet and get used to how your canopy recovers. Then start by coming in 10 degrees off the windline, and making a gentle front riser turn to line up with the wind at ~100 feet. The canopy will dive and accelerate, so be prepared to drop the front riser instantly and flare if you have to. Also be prepared to steer in the flare, since the canopy may not have stopped turning completely before the flare begins. Done correctly, you'll start the flare with more forward speed, giving you a longer planeout. Make sure your flares are smooth for this! A smooth flare generates more lift for a longer period of time than "stabbing" the brakes. However, don't start the flare at 30 feet - starting the flare that high will slow the canopy down, negating the effects of the front riser approach. If you do find yourself stabbing the brakes to prevent hitting the ground, move the altitude at which you start front risering up. Probably the most critical skill you will get from this exercise is the development of the "sight picture." Below 200 feet your altimeter is pretty useless, and you should be looking at traffic and the landing area anyway. Eventually you'll develop a sense of what "picture" you should see just before you start that riser turn. The picture will vary with wind, landing area etc. If you arrive at the point where you would normally start the front riser turn, and the picture's not right - abort it and land normally. Once you have the picture down, and are doing front riser turns that transition to gradual flares, then start increasing the angle. Once you get to 90 degrees you're going to be gaining a lot of speed, so be sure to adjust your sight picture up to compensate. As always, bail by dropping the risers if you feel like there's anything wrong. Once you drop the risers, level the wing with your toggles and prepare to flare. At worst you'll have to land crosswind - but that's a skill you should have by this point anyway. 6. Land on slight uphills and downhills.Often, land away from the DZ isn't perfectly flat; sometimes you can't tell this until you're at 20 feet. To prepare for this, find a place in your LZ that's not perfectly flat, scope it out, and plan on landing there. There's not too much magic concerning landing on a slope. You flare more aggressively to land going uphill, less aggressively to land going downhill. Obviously not all DZ's have slopes. If you don't have a good slope on your DZ somewhere, you may have to put this one off until you're at a DZ that does have one. Beaches are a good place to practice this, since they have pretty predictable slopes down to the water, and overrunning the landing just means you get wet. 7. Land with rear risers. Knowing how to land with rear risers can help you deal with a canopy problem like a broken or stuck brake line, and can help you make a better land/cutaway decision when you do have such a problem. Again, this is best practiced up high. See how far you can pull the rear risers before the canopy stalls. It will stall much earlier with rear risers; memorize where that happens so you don't do it near the ground. When you try it for real, choose an ideal day - steady moderate winds, soft ground, clear pattern. Be sure to try this for the first time on a largish canopy (one of the reasons you should do these things before downsizing.) Leave your hands in the toggles and wrap your whole hand around the rear riser. That way if things go awry you can drop the risers and flare normally. Start the flare at a normal flare altitude, and prepare to PLF. You may get the sort of lift you're used to, but you probably won't slow down as much before you're near that stall point. Make sure your feet are on the ground (sliding preferably) before you get there. On smaller canopies, you may want to start the flare with rear risers. Then, once the canopy is leveled out, drop the risers and finish the flare with the toggles (which are still around your hands.) That way you get your vertical speed to zero, which is the critical part of a safe slide-in landing, and can still stop the canopy without hitting the ground going too fast. (This is also a technique used by swoopers to extend their swoops BTW.) The above list is not meant to include all the skills you need to safely fly a canopy; it’s just a checklist for a cross-section of skills you should have before downsizing. Some of these will be easier on a larger canopy, and can be practiced right away. Landing downwind, for example, is easier on a larger canopy simply because it can slow you down more before stalling. Some skills are more difficult on a larger canopy. It can be difficult to get a planeout at all on a larger F-111 canopy, so practicing things like a flare turn may best wait until you approach a 1:1 loading on a ZP canopy. At that loading, the canopy begins to perform more along the lines of how we expect a HP canopy to fly. More importantly, skills like the flare turn become both possible and necessary to practice, so you can hone your skills while you are under a canopy that tolerates minor mistakes. As I mentioned in the beginning, these are skills you should learn before you downsize, although some (like the flare turn) can be difficult to practice at very light loadings. If you can't do some of them yet? Get some coaching; it makes a lot more sense to learn them on your larger canopy, before you start jumping a smaller canopy that scares you. Once you can do them all, then try the smaller canopy. And if someday someone cuts you off under the smaller canopy, you'll have the reactions you learned under the larger canopy. Even if you haven't completely adapted those manuevers to the smaller canopy yet, those reactions will more likely than not save your life.
  3. Exits at the Baltic Boogie 2015 Image by Konwent Photography There are a number of ways to kneecap a boogie, and they often have something to do with your gear bag: a forgotten helmet that lands you in a beat-up student ProTec all week; a forgotten suit that leaves you slippery and gripless; the dreaded out-of-date repack card. When you’re gathering up everything you need for a week of rapid-fire skyjumpin’ in a far-off location, it’s easy to forget a (key) detail here and there. Maybe this--my personal packing checklist--might help.* The Basics Rig(s) Helmet(s) Suit(s) (wingsuit/tracking suit/belly suit/tunnel suit/freefly suit/sit suit/dinosaur onesie/all of the above) Dytter Altimeter Gloves Your preferred skydiving kicks Your credit card (and a healthy sense of realism about how thoroughly it’s about to be abused)Paperwork In-date parachute association license In-date reserve repack card AAD air travel card (like the one, from Cypres, or this one, from Vigil) so you aren’t caught off guard at any check-in you may pass through during your skydiving careerRig Protection Packing mat/drag mat: preferably, with a sun cover, riser holders and at least one pocket (If your mat doesn't have a sun cover, bring an old towel to cover your gear during any short moments you need to leave it in the sun.) Bonus points if you sew your own. Extra bonus points if you sew me one. A sturdy, high-quality suit hanger with molded shoulders (to hang up your suit(s) well away from the dirty hangar floor)Tools Several pull-up cords (or your trusty power tool) Leatherman, Swiss Army knife or other sturdy multi-tool Line routing card Hemostat or tweezers (for those moments when your fingers are just too big for the job)Replacement Materials Extra closing loops Rubber bands, both large and small (or Tube Stoes, if that’s your jam) Any special batteries you might need for your doodadsLogging and Note-Taking Materials Logbook. (If you don't keep a digital version, keep the paper book in a Ziploc bag because--let’s be real--you always spill either coffee or beer on that thing.) Ballpoint pen Pencil/eraser Sharpie Notepad (for sharing information with other skydivers, such as phone numbers and scrawled threats) Labeling tape (to mark everything with your identifying information)Camera Stuff * Note: Obviously, serious, like, aerial cinematographers have a much more nuanced kit than this. This is a starting point. Label everything. Camera. Or, y’know, cameras...but try not to cover the entire surface area of your body with ‘em. Waterproof case Non-waterproof case (for dry situations where you prefer better sound over better equipment security) Mounts Mount wrench Sync/charge cable Microfiber lens cleaning cloth and solution Extra SD cards, labeled clearly with identifying numbers (those little SD card wallets are nice)Comfort Buff(s) Non-perishable "emergency" snacks A water bottle (or rollable Platypus bottle) with flavor packets, teabags or whatever else entices you into actually sucking on the thing at regular intervals UV-protective sunglasses Sunscreen Kneepads Clean sweat rag Ponytail holders Rehydration packets (because that beer truck may well sneak up on your blind side)Additional Tips Label everything. Lots of skydivers on the DZ will have exactly the same items that you do in their packing kit for skydiving, from closing tools to helmets. If unlabeled items go missing from your kit, it’s likely not an issue of dishonesty -- just mistaken identity. Labeling often solves the problem before it arises. Keep it clean and organized. Keep like with like in separate bags within the larger gear bag, and keep everything protected from dust, dampness, dirt and sun. Make it easy to find every individual item, and you’ll save hours of time in the long run. Get an idea for what your access to the facilities is going to look like at the boogie. We’re talking cooking; laundry; showers. If you’ll need to carry in coins for showers and laundry--or if you’ll have to pre-buy something like laundry soap before you drive out into the hinterlands, or something along those lines--you’ll be glad you knew about it and planned accordingly. Ask around about the experience you can expect at the boogie you’re planning to attend. Skydivers who have been there before will be glad to run down the highlights and challenges for you. Even better: you might end up convincing them to join you for a reprise. *If you have additions to this list, by all means PM me!
  4. The advice Brian Germain provides in his article titled "Surviving the No Wind Landing" might help you achieve consistent, comfortable landings on days when the winds are calm. Unfortunately, other jumpers might not be as successful when trying to follow that same advice. Some of the techniques described in "Surviving the No Wind Landing" are slightly advanced, and jumpers who are just trying to perfect basic flaring skills might find those techniques difficult to use. Other information in that article might be helpful to people flying certain specific sizes and types of canopies, but we might discover that this information does not actually apply to a significant number of canopies in common use. The first piece of advice Brian offers is to "make sure you level off within touching distance from the ground." This can certainly lead to softer landings, particularly in calm winds. There is only one problem: if many jumpers fear no-wind landings, there are probably even more who are afraid of flaring too high. For some people the game is over at the instant they realize they have made that mistake: they expect the worst, stop flying, and start panicking. In an effort to always level off within touching distance from the ground some jumpers develop a habit of consistently flaring too low. Another common problem occurs when people reach for the ground with their feet, believing they are within touching distance when they are actually a few feet high. People who suffer from these habits are often pleasantly surprised, and see a remarkable improvement in their landings, when they learn that it is not actually necessary to level off with your feet right at ground level. Many modern canopies are actually very forgiving of a high flare. Understanding the StallA very common concern is that a canopy will stall if it is flared too high. Brian reinforces this concern when he mentions the importance of arriving at the ground "before the stall breaks." To understand why flaring slightly high is not necessarily a problem we need to take a closer look at the concept of a stall. "Stall" has a very specific meaning in aviation. It is a significant decrease in lift caused by a separation of airflow that occurs when a wing reaches its critical angle of attack. Understand? No? Okay, then imagine a car driving down the highway, heading toward a curve in the road. Most highways have gentle curves, for good reason, because cars tend to fly off the road if a curve is too sharp. Now think about the relative wind blowing in your face under canopy. Your canopy bends that relative wind to create lift. Pulling down on both toggles pulls the tail of the canopy down and bends the relative wind even more, creating even more lift. The further you pull the toggles down the more lift is created, up to a certain point. The "critical angle of attack" is the point where the curve becomes too sharp and the relative wind separates from the canopy like a car flying off of the road. This separation results in a sudden and dramatic loss of lift. The term "stall" refers specifically to the sudden loss of lift that occurs in this particular situation. Image 1 shows a canopy being intentionally stalled. In frame "A" the brave and handsome test jumper is putting the canopy into brakes, pulling the tail down and increasing the curve that the relative wind must follow. In frame "B" we see the canopy in very deep brakes, but not yet in a stall. The canopy is curving the relative wind sharply and creating a lot of lift. In this flight mode it is flying slowly through the air with a very low rate of descent. In frame "C" the canopy has reached the critical angle of attack. The lift is rapidly decreasing as the canopy begins to stall. In frame "D" the canopy has entered a full stall. When flaring it is obviously important to have your feet on the ground before your canopy stalls. But let's think about a student canopy. Student canopies are traditionally not supposed to stall when the toggles are held all the way down in a full flare. They are either specifically designed that way or are rigged with extra slack in the brake lines. What about a slightly smaller canopy, such as one that might be used by a novice or intermediate jumper? If the brake lines are set to the correct length specified by the manufacturer, many canopies in this category also will not stall when the toggles are held all the way down in a full flare. They will simply maintain a slow forward speed and low rate of descent, just like frame "B" in image 1. Even if they do stall it might not occur until the toggles have been held all the way down for a number of seconds: sometimes five or six seconds, maybe even more. Jumpers who fly these types of canopies don't really need to be too concerned about an accidental stall. You may be surprised to learn that some small, "high-performance elliptical" canopies also will not stall with the toggles held all the way down, or at least not until they've been held there for a few seconds. Whether or not a particular canopy will stall when it is held in a full flare depends on several factors, including the model and size of the canopy, the length of the brake lines, the length of the risers, and length of the jumper's arms. When held in a full flare a significant number of canopies will simply maintain a relatively low airspeed and rate of descent, at least for several seconds. This knowledge can be very helpful when we talk about flaring high. Look at image 2. In frame "A" we see a jumper reaching level flight with his toes about six feet above the ground. Tragedy? Not really. There are only three things he needs to do: 1) wait wait wait; 2) keep it straight; and 3) FINISH! "Wait" means stop pulling the toggles down as soon as you realize you've started flaring too high. Save the rest of the flare for later. "Keep it straight" is important, too. You want to look at a point on the ground out in front of you and keep the canopy flying straight toward that point, just like driving your car down a straight road. And when the canopy starts to drop you back toward the ground, just before your feet touch down, push the toggles down and FINISH your flare, as we see in frame "B." In most cases doing this will result in a reasonably soft, stand-up landing as we see from the last two frames. Even if you don't land softly, look at frames "B" and "C" again. What body position are you in when you finish your flare properly? Looks like you're ready for a PLF, doesn't it? Granted, you will achieve softer landings on calm-wind days if you level off right above the ground, but that is a skill that needs to be developed through practice. An important step in that process is learning to relax and stay focused if you do flare high. This will allow you to keep flying the canopy and finish the flare properly, which will improve your landings in all conditions. Practice at AltitudeWe can see the importance of knowing whether or not your canopy will stall when held in a full flare. How can you find this out? Yep, you guessed it. Under canopy, in your holding area, above 2000', after checking thoroughly for other canopies, push those toggles all the way down and see if that baby stalls. If you've never stalled a canopy before you may want to get some advice from an instructor or coach before trying it. So try it. Did your canopy stall? No? Makes flaring seem a bit less intimidating, doesn't it? Or was the canopy easier to stall than you expected? If so, you may want to have it checked out by a rigger. Some canopies are relatively easy to stall, even with the brake lines set to the correct length. If you are jumping one of these canopies then hopefully you've already perfected your landing technique under something more forgiving. If you can't stall your canopy just by holding the toggles down, does that mean you won't be able to get enough stopping power at the end of your flare? Some people believe so, and Brian touches on this point in his article when he stresses the importance of making sure your brake lines are "short enough:" Brake Line Settings "Most manufacturers set the brake lines to allow for a certain amount of slack so that when the front risers are applied with the toggles in the hands, there is no tail input. This, coupled with shorter risers... will prevent you from reaching your parachute's slowest flying speed." In reality, many popular canopies do not come from the factory with this much slack in the brake lines. For example, people who jump a Sabre2 from Performance Designs or a Triathlon from Aerodyne Research might prefer to have the brake lines lengthened a few inches beyond the factory setting if they use their front risers a lot. Even then, they might not lengthen them to the point where there will be no tail input all when the front risers are used. Even canopies specifically designed for swooping won't necessarily have the brake lines set that long. Is there really anything wrong if your canopy does have a bit of extra slack in the brake lines? Usually not. Even with the brake lines "detuned" on a student canopy, we still expect students to learn how to stand up their landings. In fact, many popular canopies used by experienced jumpers will also slow down enough for a comfortable landing even if you cannot reach the canopy's absolute slowest flying speed: plenty of people achieve soft stand-up landings in calm winds under canopies that will not stall when the toggles are held in a full flare. Even jumpers who have intentionally lengthened their brake lines for swooping can still achieve comfortable landings in calm winds. Is there anything wrong with shortening your brake lines? In some cases, yes! Especially if they are shortened so much that they pull the tail down when your toggles are in the full glide position. As an example, look closely at the tail of the canopy in image 3. It seems like the jumper is pulling the toggles down slightly, but a closer inspection reveals that his hands are all the way up. Having a canopy's brake lines set too short like this can significantly reduce the flare power on some canopies and make them noticeably more difficult to land, particularly on calm-wind days. Excessively short brake lines are more common than many people realize and frequently go unnoticed. It is a common mistake for someone to shorten a canopy's brake lines because it appears that the canopy "doesn't have enough flare at the bottom end," when the real problem is that the brake lines are already too short! If you're really convinced that your brake lines are too long there are a few steps you should take before having them shortened. On your next jump, after you've released your brakes, put your toggles all the way up against the guide rings and look up at the tail of your canopy. Don't forget to watch where you're going and look out for other canopies. If your canopy looks like the one in image 3 then forget about having the brake lines shortened. They probably need to be lengthened instead. If your canopy seems difficult to land you can also have a rigger measure the suspension lines and compare them to the manufacturer's specifications. It's possible that your canopy has simply gone out of trim and is due for a reline. Once these steps have been completed then get some of your landings videotaped and see if you are finishing your flare properly. Look at the jumper in image 4, just as he is touching down. Does he need shorter brake lines to get a better flare? No, he needs to push his toggles all the way down and FINISH flaring before he touches down. Most jumpers finish their flares at least slightly better than the jumper in image 4, but not finishing completely is one of the most common flaring problems. Brian makes a very good point about this: "the brake lines can only work if they are pulled." If you are still absolutely convinced that you need shorter brake lines then follow another good piece of advice Brian gives and only shorten them an inch at a time. Make several jumps, preferably in different wind conditions, before shortening them any more. And remember that you can significantly reduce a canopy's flare power by shortening the brake lines too much. There is usually some excess brake line left over when the toggles are tied onto a canopy, and there are front row seats in purgatory for people who cut this excess brake line off. That excess line should be finger-trapped back into the brake line or secured in a similar fashion in case the brake lines need to be lengthened later on. A qualified rigger should know how to do this correctly. What else might affect your landing on a calm-wind day? Brian discusses the importance of keeping the canopy flying straight during the flare, and not allowing it to bank or turn. He emphasizes this by stating that "any tilt in the roll axis will result in a premature stall of the parachute…. due to an effect known as 'load factor.'" Load FactorIf we are going to introduce "load factor" into our discussion then let's do the math. At a bank angle of 30 degrees load factor will increase stall speed by approximately 8%. A bank angle of 45 degrees will increase stall speed by 20%. The exact stall speed of a ram-air canopy will depend on several factors, but let's use 5 mph (8 km/h) as an example. In that case, a 30-degree bank angle while flaring will only increase your stall speed by 0.4 mph (0.64 km/h). To increase stall speed by 1 mph (1.6 km/h) you will need a bank angle of 45 degrees while flaring, which is a pretty sporty maneuver by most people's standards. While load factor might sound important, is a 0.4 mph increase in stall speed a significant consideration when landing your canopy? Probably not. Nonetheless, is it important to keep the canopy flying straight while you flare? Absolutely. Even without a stall occurring, banking or turning while you flare can cause you to touch down at a higher speed. You will probably also land with your body off balance, and fall over sideways. A bank or turn during the flare is most commonly caused by reaching for the ground with one foot. You can usually see yourself doing this on video, and might even feel yourself doing it while it's happening. This problem can easily be avoided if you focus on looking straight ahead, keeping your body straight, and flaring evenly. What should your feet be doing? Do you need one foot below you and one out in front as you prepare to touch down? That probably will happen naturally just as you stand up at the end of your flare without putting any extra effort into making it happen. And putting extra effort into making it happen could cause you to reach for the ground with one foot. If you need to think about anything while you're flaring, think about keeping your feet together as you get into level flight, and continue keeping them together while you fly the canopy in a straight line across the ground as far as possible. If everything is going smoothly then as the canopy sets you down you can just stand up as if you were getting out of a chair. Your feet know what to do. Look at image 5 below. We see a jumper flaring his canopy with his feet and knees together, knees slightly bent. Looks like he's simply maintaining a good PLF position, doesn't it? As he finishes his flare and the canopy sets him down, his feet come apart slightly to accept his weight. Harness Body PositionWhat about leaning forward in the harness? Is "freeing your body from the pitch of the system" a crucial part of flaring? Look at image 5 again. A pitch change does occur when the nose of your canopy tilts up at the beginning of the flare. This pitch change is what puts the canopy into level flight, and the pitch change is actually created by the movement of your body under the canopy. In fact, it can be extremely helpful to view your body as an integral part of the parachute system instead of separating yourself from it. Feeling your body swing in conjunction with the canopy's movement is an important part of doing effective practice flares. If you like to lean forward in the harness and it seems to help your landings, that's fantastic. It feels nice and looks cool. But it's also not a problem if you simply sit still in the harness and let your feet swing out slightly in front of you as you flare. Your body will rock up onto your feet as your feet touch down and accept your weight. You can either "lean forward into the experience," as Brian suggests, or maintain a more laid-back pose if you prefer. Whichever one feels more comfortable is the best one for you. The technique Brian calls the "Seagull Landing," where you dip down below standing height then rise up again at the end of the flare, also feels good and looks cool if you do it correctly. You'll do it correctly if you develop the technique naturally while you practice good basic flaring skills. Putting too much conscious effort into achieving a "Seagull Landing" is similar to the belief that you must level off right at ground level every time: it can result in the same problems and bad habits. Most canopies will slow down just fine if you level off a comfortable distance above the ground and simply maintain level flight through the remainder of the flare. In general, it might help to stop thinking about a "no-wind landing" as being significantly different from a "normal" landing. The basic skills that you use to land in stronger winds will also help you land softly in calm winds. Any bad habits you develop might not hurt your landings too much when there is some wind to slow you down, but those habits are usually still present and affecting your flare to some degree, and can be eliminated by practicing proper techniques. Eliminating those bad habits by keeping things simple, letting yourself relax, and focusing on good basic flaring techniques will go a long way to improving your landings in all conditions. Soon you'll be just as confident landing on calm day as you are on windier ones, and you may even start to prefer calm-wind landings. Experienced skydiving instructors and coaches, like those in any other sport, develop their own opinions, philosophies, and teaching methods. The advice you get from one person may be quite different from what someone else tells you. This can actually be a good thing sometimes, because the advice that helps one person may not be equally helpful to others. The most basic, fundamental principles of aerodynamics can be used to describe the flight of any wing, so some of the things you learn about one canopy will certainly apply to others. However, specific performance characteristics can vary greatly from one aircraft to another: a 210 sq. ft. canopy does not perform exactly the same way as a 107, and a Triathlon does not perform exactly like a Sabre2. A Sabre2 does not perform exactly like a Lotus, and a Lotus does not perform exactly like a Twin Otter. When discussing canopy performance and flying techniques the most important piece of advice I give my students is this: don't passively accept anything anyone says, including anything that I tell you. Think about it, and if it doesn't make sense keep asking questions until it does. More importantly, experiment in the air and see for yourself if it's really true. Also, remember to breathe. Scott Miller References: Direction of Commander, Naval Air Systems Command, United States Navy. Aerodynamics for Naval Aviators. Washington: Naval Air Systems Command, 1960. Revised 1965. Germain, Brian. "Surviving the No Wind Landing." Dropzone.com. Sep 05 2007. (accessed October 13, 2007)
  5. Image by Andrey VeselovNobody’s going to argue that landing directly into the wind is the best way to go, but we’re not always that lucky. Got a long, narrow path between obstacles? Unless you’re super-duper lucky and the wind direction seems to have been designed entirely for your landing pleasure, you’ve got yourself a crosswind landing, my friend. If you jump at a busy DZ with a super-strict canopy pattern, you’ve undoubtedly honed your crosswind skills. Great--but that’s not the only place that crosswind landings rear their skinny heads. For instance: you’ll find them lurking at an overpopulated boogie, where the landing area is a human forest with a clear patch at the very edge…or a forehead-slapper of an off landing, where your only choice is a road...or pretty much every beach landing, ever. The importance of your landing direction should override the wind direction in a number of circumstances. Here’s how to make it work. 1. Stop bellyaching and get used to it, already.Ask any airplane pilot: landing with the wind at an angle to the runway is, like, totally normal. Ask any beach-dropzone bum or coastal-soaring pilot, and they’ll definitely elaborate on the benefits of landing smoothly with the wind pushing in hard from the side. Let go of the worry. Your ram-air wing is perfectly capable of flying with the nose pointed at an angle to the runway. That maneuver even has a name: “crabbing.” (The difference between the direction the nose is pointing and the pilot’s path--“ground track”--is called the “crab angle,” which always kinda makes me think of melted butter and tongs.) 2. Get lined up.If you’ve got a long, narrow path in front of you, guess what? You’ve got yourself a landing strip. Start humming ‘The Danger Zone’ into your helmet and get ready, Goose. Your biggest task when you line up a landing is to snag yourself as much of a headwind as possible while keeping away from the obstacles you’re certainly avoiding. Anything up to a 90-degree crosswind will work. (Your task: to avoid any kind of tailwind, if at all possible.) If you have a choice, use the longest runway you can find to increase your margin for error. 3. Get creative.As you come in on that final, you’re going to be doing something of a dance with whatever wind is pushing at you from the side. You can be assured that this wind is going to be pushing you toward something you do not want to fly into. It may be pushing you unevenly. And it may be pushing you pretty damn hard. Your approach, therefore, is necessarily going to be a little less cut-and-dry than your typical downwind/base/final box. You’ll most certainly notice that your downwind leg is not actually, like, downwind and you’re not getting the distance you’re used to. What’s usually your base leg is likely to be the actual downwind, so stay vigilant and don’t let it shove you into an obstacle. 4. Hold your focus.As you tuck into your final approach, glue your eyes on the middle of the far end of the runway. Nail them there. Staple them there. Weld them there. Do not start looking at the obstacles to either side, or you are very likely to get suddenly intimate with them. 5. Let it do its thing.From there, you have one single job: to keep the wing/canopy level while you fly in a straight line. Not so bad, right? Calmly make the necessary inputs without overcorrecting. Let the nose point in whatever direction it needs to point. Warning: this bit of the flight might seem pretty wiggly. Don’t let that motion distract you from maintaining your heading. Any inputs required to keep that straight-line heading will simply increase your crab angle and point your nose into the wind, slowing you down. 6. Come to a full and complete stop.To flare in a crosswind, make a slight adjustment to your normal procedure: use moderate emphasis on the upwind brake to get into a wind-facing position. (Please note that “moderate emphasis” does not mean “full-on, panicked toggle punch.”) 7. High-five somebody.If it’s a beach landing and you managed to drop your canopy in the saltwater, go ahead and high-five the side of your own face--but no matter what, slap that palm to something. You deserve it.
  6. Dave Rhea gives his Skyhook a workout over northern Arizona Photo Credit: Dave Rhea You’re as ready as you’ll ever be. Right? You know what a malfunctioning main looks like. You know the sequence*. You’ve done your homework (like we reviewed last time). Before you pull that handle, though, make sure you know the rest of the story: how to make that reserve ride as un-traumatic an experience as possible. 1. Do not overthink itIf you believe that your main is unlandable, you are going to have a reserve ride. Lots of skydivers have landed under reserves, realizing later that the problem was solvable. Lots of skydivers have also gone in while striving to sort out malfunctions that did not get solved. Pick your poison. 2. Do not worry about stabilityThis is the very least of your problems, as you are on the world’s most intractable timer. Worry ONLY about altitude. 3. Pull the cutaway handle until no lower than 1,000 feetIf your pull is sufficiently low (shame on you for that, by the way--gotta say it) and you have an unlandable main, you’ll be testing your reserve’s opening characteristics in the most potentially lethal way. Take note: the USPA not-so-recently raised the minimum deployment altitude even for eminently experienced D-licensed jumpers. Initiating a reserve ride below 1,000 feet isn’t always deadly, but it has an unnerving tendency to be. Don’t take the chance. 4. Hold on to your handles...or, y’know, do your best. If you manage it, you’ll save a bit of money, and you’ll save face when you land. 5. Make sure it’s outArch and look over your shoulder for the reserve pilot chute. Reserves deploy fast, so this head position may rattle your neck – but if the pilot chute is somehow caught in your burble, this should either shake it loose or make it clear to you that you need to do some burble intervention, stat. 6. Keep an eye on your free-floating mainHowever: do not try to chase it and grab it in the air. (People have died doing that, bigshot.) Don’t “chase the bag” if it means you’ll land in a dangerous LZ. Use landmarks to get a bead on where the gear is headed, then take a deep breath, leave it to the fates, and prioritize your mortal coil. 7. Remember: Your Cutaway, Your BusinessWhen you land a reserve, you’re going to be the talk of the DZ (for about five minutes, usually). During that five minutes – longer, if the loads are turning slowly – you’ll probably be approached by a gamut of big talkers and would-be mentors, questioning your malfunction and eager to discuss your decision to cut away. My advice: speak to your trusted mentors and co-jumpers about it in private, and tell the rest to go suck an egg. When you suddenly need to get proactive about saving your life in the sky, make no mistake: you are absolutely alone. In the entire world, there exists only you and two handles. Your cutaway is your business. You were there. They were not. Review your own footage to determine the nature of the malfunction and review alternative methods of correction, if applicable. 8. Buy a bottle of posh booze for the rigger who packed the reserve you rode, and keep the reserve pin for posterity. It’s tradition. * Arch, look down at your handles, grasp the handles, pull cutaway, pull reserve.
  7. admin

    Parachute Malfunctions

    A malfunction is any failure of the system to provide a normal rate of descent and this includes loss of canopy control. Malfunctions are normally caused by one or a combination of the following: bad packing, poor body position during canopy deployment and/or faulty equipment. There are some malfunctions, however, that just happen (Acts of God); parachutes are good but not perfect. Failures of the main parachute can be divided into two areas. Either nothing comes out and you have a total malfunction or the canopy starts to open but something is wrong with it and you have a partial malfunction. Each of these two areas will be broken down still further in this chapter. It is because of the possibility of an equipment malfunction that the USPA’s Basic Safety Requirements list the opening altitude for students at 3,000 feet AGL. (For tandem jumps, it is set at 4,000 feet AGL. For A and B licensed skydivers, it is set at 2500 feet.) The BSRs and the FARs require that a second (reserve) parachute be worn for all sport jumping. It is important that you are drilled in its use. But even with the stated opening altitude safety margin or cushion, you must be aware of the time, speed and distances involved. If you exit the aircraft at 3,000 feet AGL, for example, you will begin to accelerate; you start off at zero vertical speed and then fall faster and faster until you reach terminal velocity (more about that later). If you didn’t have a parachute, it would take you about 22 seconds to reach the ground. In the case of a partial malfunction, you will have a little braking from your canopy and this means even more time. But even if you have a total, allowing for reaction time, you should be open under your reserve at well above 1,500 feet. In fact, while it seemed like an eternity to you, your friends on the ground will tell you that you performed your procedures quickly and efficiently; you will be surprised at how fast you react to a malfunction. Your main parachute takes 3-4 seconds to open and the reserve may be just slightly faster. Even at terminal velocity, which in a face-to-earth,stable position is about 110 mph, (the fastest you can fall in that position), four seconds translates into about 700 feet. If you haven’t been jerked upright by the sixth segment (second) of your exit or pull count, you should already be into the emergency procedure for a total malfunction. Static lines not hooked up, in-tow situations, lost or hard ripcord pull or pilot chute problems have already been discussed and won’t be repeated here. Total Malfunctions Of all the possible equipment malfunctions, the total (pack closure) is the safest to deal with because there is no other garbage over your head to interfere with the deploying reserve. While the total is the easiest malfunction to rectify, remember it also presents you with the least amount of time in which to act. Do not spend time trying to locate a lost handle; you do not have time. Do not waste time breaking away; a loose riser could tangle with a deploying reserve. When in doubt, whip it out. (Pull the reserve ripcord.) Partial Malfunctions A partial malfunction is one in which the canopy comes out of the container but does not properly deploy. The canopy may not inflate (e.g. a streamer that hardly slows your descent at all) or it may take on some air and be spinning violently (e.g. a line over or slider hang-up). You could have an end cell closure that will probably slow you enough for a safe landing. So, partial malfunctions may be major and minor. An additionally important consideration is that they may be stable or spinning. Most partials can usually be attributed to an error in packing or poor body position on opening. Some partials, however, just happen. Some partials are so minor, most instructors do not even classify them as malfunctions; they call them "nuisances." Some of these things that just happen are line twists, end cell closures and a slider that has not fully descended. These are correctable problems which you will be trained to handle. A good canopy is rectangular (square) and flies straight once the slider is down and the brakes are released. It is stable through the flare and turns properly with the correct toggle inputs. (Remember the controllability check?) Major partial malfunctions. Ones that you don’t waste time to correct. Bag lock presents you with trailing lines, bag and pilot chute but the canopy will not come out of the bag. This problem is not likely to clear itself. Breakaway and pull your reserve. Horseshoe. This malfunction can result from bad maintenance, failure to check equipment and incompatible canopy/container systems. It can happen when the locking pin or ripcord is dislodged from the closing loop, allowing the bagged canopy to escape before you have removed the pilot chute from its stowage pocket. The horseshoe can occur if you tumble during the deployment sequence, allowing the pilot chute to catch on your foot, your arm, or some other part of your body, but these are rare occurrences today. Another possibility is a poor launch of a pilot chute from your container, allowing it to fall back into your “burble” (the partial vacuum behind you) where it can dance around and snag on something, preventing it from properly deploying. Improper hand deploy procedures can lead to the pilot chute being caught on your arm. The danger of a horseshoe malfunction is that a pulled reserve may tangle with the horse-shoed main as it tries to deploy. If you experience a horseshoe, and you are using a hand deployment technique, pull the main’s hand deploy pilot chute immediately. Then, and even if you can’t pull the main hand deploy pilot chute, execute a breakaway and deploy the reserve. Chances are that there will be enough drag on the lines and canopy to separate the risers from their attachment points and present only a single line of “garbage” for the reserve to clear (rather than a horseshoed main). Violent spin. Unless you can tell immediately that you have an unstowed brake, breakaway and pull your reserve. If you have plenty of altitude and the problem is not compounded by line twists, push the toggles down to the crotch for two seconds, then let up slowly. If the spin continues, break away and pull your reserve. Line overs can occur when a brake lock releases during the opening sequence allowing one side of the canopy to surge forward over itself, or due to a packing error or an Act of God. If you are on a very high clear and pull, you may try to pull down on the end lines (by the risers) to make the other lines slip off. However, if you deployed at the normal pull altitude, you do not have time for this maneuver on the main. Break away and pull your reserve ripcord. If this happens on a square reserve, pulling down on the side the lines are over is your best hope, along with a great PLF. Partial Malfunctions That May Be Majors Or Minors Partial malfunctions that may be majors or minors. You may have time to make a decision as to how to handle them. Rips and tears are not common on ram-air canopies and may usually be ridden in. Even a rip from leading edge to trailing edge on one surface can probably be controlled. Internal rips may not be visible. See whether the canopy is controllable with toggle pressure no lower than your shoulder. If your controlability check indicates a serious problem, break away and pull your reserve ripcord. If the check does not indicate a serious problem, make slow, shallow turns and flare slowly for landing. The snivel is a slow, mushy opening. The canopy’s fabric weave opens up slightly after a few hundred jumps and becomes more porous. Higher permeability leads to sniveling. Look up after pulling to watch your canopy open. Learn to distinguish a slow-opening snivel from a never-opening streamer. Sometimes replacing the pilot chute will lead to quicker openings. Try packing the nose of the canopy in different positions but check with a rigger before you experiment. Contact the manufacturer about resetting the brakes two inches higher. Then the canopy will take to the air with the tail somewhat higher giving the leading edge a better bite of air. Slider hang-up, at the canopy. The slider may hang up at the top of the lines because it is caught in the lines or caught on the slider stops. Grommets become battered and rough as they slide down and hit the connector links at the risers. The links should be fitted with plastic sleeve buffers. Make sure the grommets are smooth. A slider hang-up at the canopy is a high-speed malfunction and will be hard to clear. You may be upright but you are descending quickly. There is little time to deal with a slider hang-up at the canopy, so jettison your main and pull your reserve ripcord. Slider hang-up, halfway. A slider hang-up halfway down the lines will slow you down but possibly not enough for landing. Check your altitude and if there is time (you are still above the decision altitude for emergency procedures), release the brakes and pull the toggles down to your crotch for two seconds in an effort to stall the canopy and relieve some of the spanwise spreading of the canopy. Repeat if necessary, pump the steering lines up and down. If the slider descends to within 10 or 12 inches of the connector links, that is close enough. Sometimes, the slider is caught higher in a suspension line or steering line. Let both toggles up to determine whether the canopy will fly straight. If you have to pull down the opposite toggle to more than shoulder level to maintain straight flight, the canopy will probably be unstable. If you don’t gain total control of the canopy by the decision altitude (sometimes called the hard deck), break away and pull your reserve ripcord. If the slider comes down the lines halfway and stops, the canopy has probably changed in some way. After you are safely on the ground, measure the line lengths and compare opposite lines. Check the slider grommets for damage. Bring the canopy to the equipment manager (if it is student gear), your rigger, or send it to the manufacturer for inspection. Broken suspension line(s). Most line breaks only put the canopy into a slight turn. Correct the turn with opposite toggle pressure. Occasionally the broken line causes the slider to hang up. Do a controllability check. If there is any internal damage to the canopy, it will not perform as expected. Failing a controllability check will dictate a breakaway and a reserve deployment. Minor Malfunctions Minor malfunctions are more like nuisances that can be dealt with and don’t threaten you unless they get worse or are complicated by other problems. Line twists. Sometimes, the bag rotates a few turns as it lifts off. Now you may find it difficult to get your head back to look up at the canopy. The problem is that the risers are closer together and twisted instead of spread. These twists can happen with or without your help. If you are kicking, rocking or twisting just as the bagged canopy lifts off, you can impart a twist to it. The principle is the same as when you give a Frisbee disc a flip of the wrist on launch. Line twists are more common on static line than freefall jumps. Determine quickly whether the canopy is flying straight, your altitude and which way the lines are twisted. Reach above your head, grab the risers and spread them to accelerate the untwisting. If necessary, throw your legs in the twist direction. Line twists are worse on a ram-air canopy than a round because you cannot pull down on the steering lines to control the canopy until the twists are cleared and this may take up to 30 seconds. If the canopy is spinning in the same direction, you may not be able to untwist faster than it is twisting. Do not release the brakes until untwisted. While you have the risers spread, check your canopy to make sure nothing else is wrong with it. A spinning canopy descends quickly. If you haven’t untwisted the lines by 1,800 feet AGL, break away and pull your reserve. Premature brake release. Ram-air canopies are packed with their brakes set to prevent the canopy from surging on opening. If one brake releases on opening, the canopy is likely to turn rapidly which can escalate into a spin and/or an end cell closure if not corrected immediately. If the canopy doesn't have line twists, grab both toggles and pull them down to your waist. (Grabbing both eliminates having to choose which one to pull.) This maneuver will release the other brake, reduce your forward speed, stop the turn and let you see if any lines are broken. If the premature brake release is compounded with line twists, releasing the other brake may have some or no effect. Be aware of your decision altitude and try to unspin from the line twists. If you are sure that just one steering line is still set in its deployment setting, you might try to release it. Broken steering line. When you find one of your steering lines has snapped or floated out of reach, release the other brake and steer the canopy by pulling down on the rear risers. Do not try to steer with one control line and the opposite riser. The turns will be inconsistent and you may find yourself in a dangerously low turn when you flare for landing. Pulling down on the risers may be hard but it will steer the canopy. The canopy will probably want to turn in the direction of the good control line. If you cannot make the canopy fly straight with the opposite riser, break away and pull your reserve. If the broken line wraps around the slider, do not try to pump the slider down any further. It will only make the turning worse. Reserve some energy to pull down on both risers at about ten feet from the ground to flare the landing. You want to start this flare lower because pulling down on the risers results in a more pronounced flare. Steering line(s) won’t release is similar to dealing with a broken steering line, except that one may release while the other won’t. If neither steering line releases, simply fly the canopy to a safe landing using the rear risers. If only one releases, then you can pull that steering line down to the point at which the canopy will fly straight, then control the direction the canopy flies by either using the rear risers or using the one working steering line. Quite often, you will have time to grab the riser of the steering line that won’t release and work towards getting it released. Be mindful of your altitude as you work on the problem. You don’t want to steer yourself to a hazardous landing while you are distracted with this release challenge. Pilot chute "under/over" problems. The pilot chute may fall over the leading edge of the canopy and re-inflate underneath, usually causing a turn in the distorted canopy. Attempt to stall the canopy slightly so that it backs up, possibly allowing the pilot chute to come back up and over the front of the parachute. If the canopy cannot be controlled with toggles, break away and pull your reserve ripcord. End cell closures occur when the pressure outside the canopy is greater than the pressure inside. They usually happen during canopy surge on opening but they can also be caused by radical turns or turbulent air. Turbulence can occur on hot, no-wind days, on windy days downwind of trees and buildings, and during stormy conditions. Lightweight jumpers under large canopies (called low wing loading) will experience end cell closure more frequently. To avoid end cell closure, fly with one-quarter to one-half brakes. To counteract end cell closure, push the toggles down to your crotch for a few seconds, until the cells inflate, then let the toggles up slowly. Repeat if necessary. End cell closures are not a major concern. Keep the canopy and land it if it is not spinning. If the end cells collapse below 200 feet, do not try to re-inflate them.Pull to half brakes to stabilize the canopy. When you flare for landing, the cells will probably pop open. Combination Malfunctions When confronted with more than one malfunction, correct for line twists first. The canopy will be uncontrollable until the twists are removed. When in doubt, whip it out, especially if you are at or below decision height (1800 feet AGL). Two Canopies Open You may find yourself confronted with two fully open canopies. This can happen in several ways: The automatic activation device on your reserve could fire when you are happily flying your canopy through 1,000 feet; you may have reacted very quickly to a pilot chute hesitation without effecting a breakaway; or the main release system may have failed to separate during an emergency procedure. If the two canopies take off at different times, they may not deploy into each other, but you need to be prepared to handle that possibility. At the Parachute Industry Association Symposium in Houston in 1997, a detailed report was presented on the performance of two ram-air canopies out — a very dangerous situation. First, quickly check the condition and position of the main and reserve canopies, then make your decision based upon the following: If the two canopies are flying side by side, steer yourself to a safe landing area by using gentle control inputs on the larger canopy. Due to the nearly doubled surface area supporting your weight, the effective lift of the parachute system will make flaring the canopies unnecessary. Flaring one could create a hazardous situation, especially close to the ground. If the two canopies are both flying downward towards the ground (called a downplane), jettison the main. Note:Certain reserve static line lanyards may have to be disconnected so as not to foul the reserve parachute when the main is disconnected. Ask your instructor about the specifics concerning your system. If the canopies are flying one behind the other and in the same direction (called a biplane), make gentle steering inputs with the lead canopy (which is usually the main). Do not release the rear canopy’s deployment brakes. Do not flare the landing. If the reserve container has opened but the reserve canopy has not yet, or not completely deployed, make gentle steering inputs with the main and try to haul in the reserve and stick it between your legs. Tandem Jumping Malfunctions Tandem jumping malfunctions may be aggravated because the weight is doubled while the effective drag area of the two falling bodies is not. As long as the drogue pilot chute has been deployed properly, freefall speeds are about the same as a single skydiver. If the drogue is not deployed or fails to work properly, the terminal velocity will be much faster than that of a single skydiver (110 mph); perhaps as much as 160-170 mph. The greater speed places a much greater strain on the parachute system and on the jumpers. Large Ring And Ripcord Handle Older harnesses used a plain round ring for the largest of the rings in the 3-Ring canopy releases. When the main canopy is jettisoned, the largest of the riser-release rings remains on the harness. If the rings flop down on the lift web, the one near the reserve handle may be mistaken for that handle. Both are large silver rings and the reserve handle may have shifted from its normal position. Some jumpers have broken away only to tug on the wrong ring. Some never lived to tell about it. Newer equipment may have a shaped large ring or a smaller (mini) ring that is more difficult to confuse with the reserve handle. If you have older equipment, you should be aware of this potential problem. Change Of Emergency Procedures Anytime you change your equipment or emergency procedures, make sure you are thoroughly trained. Practice in a suspended harness until proficient on the new equipment. Each corrective procedure is different and you must not waste precious seconds in an emergency thinking about what you should do. You must act automatically and quickly. Review your emergency procedures prior to each jump and touch all your handles before you proceed to the door. Breakaway Training Breakaway training is essential to assure that it will be accomplished completely, quickly and well. Training must take place in a suspended harness that is easy to rig up. Simply tie an old set of risers to an overhead beam and attach them to your harness. The drill must be repeated again and again until it becomes mechanical and automatic so that you will perform correctly and without hesitation should the time come. When you take your reserve in to be repacked, ask your rigger if you may practice the breakaway to include the reserve pull. It is a valuable experience and in this controlled environment, it is safe for your gear. Emergency Priorities Think about and review the seven priorities of skydiving: Pull - Open the parachute. Pull by the assigned altitude or higher - whether stable or not. Pull with stability - to improve canopy-opening reliability. Check the canopy - promptly determine if the canopy has properly opened and is controllable. If necessary, activate the reserve - perform the appropriate emergency procedures if there is any doubt that the main canopy is open properly and is controllable. Land in a clear area - a long walk back is better than landing in a hazardous area. Land safely - be prepared to perform a PLF with the feet and knees together to avoid injury. Canopy Collisions Let’s assume that your canopy has just opened properly and you are reaching up for the toggles when suddenly, you look ahead and see another canopy coming directly towards you. What should you do? If the collision is avoidable by steering to the right or left, choose the right. The turn to the right is virtually universal in all forms of navigation. If the collision is unavoidable, spread your arms and legs out to absorb the impact over the most surface area possible. Chances are that spreading out will allow you to bounce up and over the lines and canopy you will be colliding with. You may get a bit hurt, but you will be alive so long as you don’t make full body contact with the other jumper. If you find yourself entangled with another parachute, the general rule of thumb is that the lower person has the right to perform emergency procedures first. Communicate with each other as to what you want to do, what you’re going to do, then do it while you still have enough altitude to do it safely. Most canopy collisions occur during the landing phase of the skydive, when too many people are trying to get into one tiny area all at the same time. Vigilance in canopy control and choosing a less congested area can help avoid this emergency. If you do end up tangled at an altitude too low to break away (less than 500 feet AGL), ride about half brakes and get set to do a fantastic PLF.
  8. Michael Huff has a hard time saying goodbye. Photo credit: Michael HuffAre you ready to be alone in the sky with a malfunctioning parachute and two little handles? Though there are skydivers with thousands of jumps who have never experienced the fun of a cutaway, don’t be fooled: it’s not a question of “if,” it’s a question of “when.” Don’t feel ready? You’re not alone – but there are a number of proven ways to boost your confidence (and, therefore, safety). 1. Stay CurrentI know. It’s not your fault. Your home DZ is seasonal – or it’s far away – or it’s a tandem factory that keeps sullen fun jumpers on the ground. Whether it is or isn’t your motivation that’s the problem, the fact remains: long lapses between jumps are dangerous. They dull skills, heighten apprehensions, create a sense of unfamiliarity with aircraft and degrade the muscle memory you have carefully built around your gear, which is of vital importance in the event of a reserve ride. It’s vital to your career as a skydiver – especially, at the beginning – to make the effort to jump every couple of weeks. Make the effort and get up there. 2. PrepareThe USPA Skydiver Information Manual puts it rather dryly: “Regular, periodic review, analysis, and practice of emergency procedures prepares you to act correctly in response to problems that arise while skydiving.” Rephrased in a slightly more compelling manner: practicing might save your life, especially if you’re a newer skydiver who isn’t quite as accustomed to the stresses of freefall as an old-timer. Here’s a two-item to-do list to tip you in the right direction: Deploy your reserve for every repack. Have you ever deployed the reserve for your current skydiving rig? If not, the result may surprise you. You’ll learn the direction of pull for your gear, as well as the force you’ll need to exert. If your rigger watches the process, he/she can watch the deployment and identify potential problems. Even if you have deployed your own reserve, a repack is an unwasteable drill opportunity. Practice emergency procedures in your DZ’s training harness. (You may feel like a dork, especially if you’ve already been skydiving for a little while. Go on a quiet weekday and do it anyway.) 3. Do The Little DanceBefore each and every jump, the USPA advises skydivers to “review the procedures to avoid emergency situations and the procedures to respond to emergencies if they occur.” This doesn’t have to mean poring over your SIM like you’re cramming for a test. It does, however, require a little bit of work before every jump--just to make sure that your muscle memory is fresh and your brain is prepared for puckersome eventualities. Touch your handles in sequence before you enter the plane. It is not beneath you. Being blasé about basic safety doesn’t make you more awesome. If you ever happen to share a plane with an energy-drink teammate or a world-class coach, watch ‘em closely and you’ll see what I mean. Check that your reserve handle is seated, while you’re at it. A loose reserve handle can deliver a reserve ride without the fun of a malfunctioning main – and you don’t want that, do you?Right! So: now you’ve done what you can to be ready for a potential reserve ride on any given skydive. Next time, we’ll talk about what to do when your main decides to give you the pop quiz.
  9. The Neurology Neurosurgical Department of the University of Mississippi Medical Center, under the guidance of Patrick Weldon MD, is conducting an investigation into Injuries Sustained from Hard Openings and is actively researching any skydivers who may have been injured from a hard opening. The chief investigating physician in this study is Dr Patrick Weldon, an avid skydiver, videographer, and WFFC Load Organizer. The purpose of this study is to identify the type, extent, and duration of injuries sustained from hard openings as well as long term effects of these injuries with emphasis on recovery, prognosis, and ability to return to skydiving. Skydiver cooperation is essential to identify common factors from these injuries, and your participation will lead to better understanding of the dynamics involved in parachute openings. Results of this study could lead to improvement in parachute designs. Participants will be under no obligation to travel. Research will be initiated by telephone interviews by a Neurologist or Neurosurgeon. If participant agrees, a physician will review their medical chart and diagnostic procedures (ie. Xrays, CT, MRI etc.) Information on any and all injuries sustained from a hard-opening parachute, minor to severe, is desired. Please note that this is a medical research study only. Physicians and others involved will not in anyway cooperate with any litigation or litiganous activity. Any attempt to use this information for any lawsuit-based purpose will be denied. For more information, or to participate, please contact Dr Patrick Weldon, Department of Neurology, University of Mississippi Medical Center, at (601) 984-5500, fax (601) 984-5503, or via email: [email protected] This study will follow all applicable HIPA rules and regulations regarding medical research and patient confidentiality.
  10. Just a week after the plane crash at Parachute Center near Lodi which resulted in a Cessna 208 upside down in a vineyard, another crash has occurred. This time however, with tragic results. A Cessna 182H jumpship from Skydive Kauai in Hanapepe (Hawaii) crashed early on Sunday morning shortly after take-off. All five individuals on board the aircraft died, with four being pronounced dead on the scene while another was taken to hospital, though was also later pronounced deceased. On board were two instructors, two tandem passengers and the pilot. At the time of publication most of the names of those involved had not been released to the public, with the exception of Enzo Amitrano, one of the two instructors on board. A witness to the incident claims that the aircraft had left the runway when shortly afterwards problems with the engine were experienced. The pilot is then said to have attempted to bring the plane back towards the runway when flames began to come out of the engine as it descended rapidly. There are some conflicts in media reports as to whether the fire began during the descent or only after impact, regardless the aircraft did catch alight and firefighters had extinguished the fire withnin an hour of the incident. According to the National Transportation Safety Board, the pilot involved was not familiar with the aircraft involved. Though it is not yet clear what role this may have played in the incident. Our thoughts go out to the loved ones of those involved. Discussions about this crash can be had in the incidents forum.
  11. Image by Juan MayerIt happens so fast. You’re coming down from a great jump. You land, laughing, and whip around for the imminent high-five with a huge smile on your face. That smile drops right along with the friend framed in your view. Something happened in those last few feet of flight--you don’t know what, but that triumphant swoop turned into a spectacular case-in, and your friend’s screaming, and you’re running towards him at top speed, and his leg is at a crazy angle, and there’s blood. Lots of blood. What the hell do you do now? Wouldn’t you like to have a plan? Even if you have no intention of becoming a medical pro--or even a uniformed first responder--you can get a short education that might make you the deciding beneficial factor in someone’s very worst day...maybe even yours. This curriculum is comprehensive and practical, integrating the essential principles and skills required to assess and manage medical problems you might come across, especially but not specifically in isolated and extreme environments. It doesn’t have a name that implies its usefulness for skydiving, sure--”Wilderness First Responder” sounds like a course built just for Search-and-Rescue burlies--but hear me out. You need this. Here’s why. 1. Help is not always immediately at hand.Wilderness First Response certifications are meant to be used in earnest when the caregiver and receiver are essentially stranded in remote circumstances. While skydiving drop zones aren’t generally beyond the furthest reaches of civilization, they’re never in the center of it, either. Response times are not, as a rule, immediate. Any medical education is of enormous benefit, of course, but--for a regular-strength skydiver--the ROI of a WFR is pretty damn dead-on. The WFR course is about intelligent, informed self-reliance in the absence of immediate help. In the wilderness setting that the course was designed around, the priority is to figure out whether you can semi-self rescue, to assess what additional resources you need, and to methodically stabilize yourself and/or others until the cavalry rolls up. In the dropzone setting, this training is just as useful. 2. Whether or not you’re trained, you will always be the first responder to your own injuries. Make those early minutes count.If you end up injured during an emergency landing that’s outside the drop zone--and you don’t have a charged, functioning method of communication--then you’ll be waiting for help to find you. If you happen to be conscious in that interim (hooray lucky you), WFR training will give you a method for understanding your injury, stabilizing it and tracking its progress for later reporting. Without training, you’ll likely just lie there, terrified, in blinding pain--or make your injuries worse with incorrect responses. 3. You should be off the list of dead-weight liabilities and on the list of assets.Skydiving is a sport that demands proactive personal responsibility in the context of a mutually supportive, risk-educated community. We all understand this. That said: While a WFR certification does not confer the knowledge of a full EMT, it makes the bearer a much stronger member of the greater support team. A baseline education in first response moves you from a gasping member of the horrified crowd to a literate, assisting partner in incident management, though your role in the moment will, in all statistical likelihood, be quite procedurally basic. 4. You should dial up your powers of observation.We’re not just talking about cardiac arrest and gaping wounds, here. WFR training will help you recognize subtle symptoms in a way that could help you change the outcome. Dehydration? Hypoxia? Heat illness? These are real-life dropzone problems, and your awareness could make a big difference in someone’s day. 5. You’ll get important certifications.Successful completion of a WFR course will generally earn you a two-year Adult & Child CPR certification as well as the obvious Wilderness First Responder certification. This may or may not be an important piece of paper for you in a technical sense, but current CPR certification makes you a secret superhero in a world where lives are often saved by trained, responsive passers-by. 5. It’s a really good time. Seriously.Wilderness First Response courses are generally administered in, predictably, wilderness settings. I did mine with the National Outdoor Leadership School (NOLS) with the full majesty of the Yosemite Valley as the backdrop. My partner did his in the Grand Canyon country of Flagstaff, Arizona. WFR courses are offered in highly visitable settings all over the States--indeed, the world--and y’know what? There are few better-invested ways to spend a week in nature than learning life-saving, life-changing skills in a close-knit group of fellow adventurers. Y’know, like the close-knit group of fellow adventurers with whom you share your sky--and who are counting on you to be the best team member you can possibly be. Live up to it.
  12. A Cessna 208 was left upside down in a field just off Jahant Road, near Lodi Airport on Thursday 12 May when the aircraft was forced to make an emergency landing. While it is unclear what caused the emergency landing and no official statement on the cause has been given -- the following was posted on the Dropzone.com forums. "One of my friends was on this load. Apparently they opened the door at 1000 feet and smelled fuel, everyone sat down and clipped in, then the engine failed and the plane landed upside down after clipping a nearby SUV. This is just what I heard, not confirmed" The owner of the dropzone had told the media that while they still weren't certain of the exact reasons behind the failure, he could confirm that the propeller had stopped spinning, forcing the landing. The plane was being operated by Parachute Center and there were eighteen individuals on board at the time of the crash. Thanks to the effect use of restraints in the plane, despite the fact that it was lying upside down, all eighteen passengers walked away from the incident without injuries. However, it was not only the passengers aboard the Cessna that found themselves subject to the situation. While making the emergency landing the plane just clipped the tail of an SUV with two individuals inside. Thankfully it was merely a small nick to the vehicle and both the driver and passenger of the vehicle walked away with nothing more than a bit of shock. Showing that nothing can keep a dedicated jumper out of the sky, several of the passengers aboard the crashed plane returned to the dropzone to continue jumping, just moments after the crash. Discussions on this incident are currently taking place in the Plane Crash - Lodi 12 May 2016 thread. Update: 16 may 2016 Footage has now been released from inside the aircraft which can be viewed below:
  13. Photo by Jeff AgardJust moved across the country? Heading out to boogie in a strange new land? Impromptu road trip? If you’re not used to jumping at new-to-you DZs, reorienting yourself to a new conveyor-belt-to-the-sky is a bit daunting. But never fear, brave adventurer: if you walk in knowing what you need to do, you’ll be golden. Here’s a checklist to help make the process a little easier on you. Before you arrive:1. Do a preliminary scan for unpleasant surprises. Find out as early as possible if the dropzone (or the specific event you’re planning to jump) has special requirements that could keep you on the ground. 2. Budget. Get pricing on jump tickets, DZ accommodation and registration fees. This is a good time to check the jump-ticket refund policy and find out if there are extra charges for credit cards. 3. Ask about facilities. If you’re going to be squaring up to swampy summertime port-o-lets, miles-off RV hookups, co-ed showers (rawr) or anything else outside your comfort zone, you’ll want to know as early as possible so you can make a battle plan. 4. Make sure you’ve packed all your documentation. At the very least, you’ll need an in-date reserve repack card, your parachuting organization ID and your logbook. In some cases, you’ll also need your AAD travel documents and proof of medical insurance, too. Travel insurance is never a bad idea, either. When you arrive:1.Get the lay of the land. You’ll be spending a lot of time in the hangar and in the waiting areas, so get oriented. Pick a prime spot for your gear (hopefully, near an electrical outlet). Find the bathrooms and the fridge. Identify the load monitors, if there are any. Find out if there’s a separate window for manifest, or if the main office does it all. 2. Rock up to the office. Fill out the waiver, get a gear-and-paperwork check and buy your tickets. 3. Get briefed. You’ll likely be pounced on when you land in the office, but just in case: Pin somebody down to give you a complete briefing of the dropzone’s map and rules. Do not get on the plane without a briefing. Get clear on the manifest procedure. It seems like every DZ on the planet does this differently, and it can really get in the way if you’re not on board. Are you going to have to pay in advance, pay as you go, or pay at the end of the day? How does the ticket system work? Learn the exit order and separation rules. Many drop zones have very specific procedures in place, while others assume you should know where you belong. Watch how the local jumpers organize themselves, and ask lots of questions if you don’t get clear instruction. Check out the satellite map. You can expect a dropzone representative to use an overhead map of the dropzone and its surrounds to brief you. The rep will describe how to use recognizable landmarks to spot the dropzone from the air and review landing area obstacles, power lines, bodies of water, nasty neighbors, turbulence, the “beer line” and uneven terrain. Use this time to memorize your outs. Find out if there’s a special hard deck for this DZ. If there is one, it might be (way) higher than your personal hard deck. Check out the wind indicators. Find them on the overhead map, then peek at them in person while you take yourself on a tour of the main (and alternate, if applicable) landing areas. If there are tetrahedrons, ask if they’re trustable or if they’re “sticky.” Know the landing pattern. Landing patterns are not the same across dropzones, ranging from first-one-down-sets-it to a regular Busby Berkeley choreography of established patterns that never, ever change. Until you’ve internalized the unique rhythm, it’s best to give the main landing area a wide berth for your first handful of jumps at a new DZ. Make sure you know the rules and areas for swooping and hook turns, whether or not you plan to do them. (Don’t be the big canopy that tugboats lamely across the zoomy canopies’ path.) Figure out the loading procedure. Find out how the calls are announced and where you need to be to hear them. If there are shuttles to the plane, you’ll need to know what the call is to be on the shuttle. If there’s a retrieval from the landing area, make sure you know where it is (and hoof it over there right after touchdown).4. Get on a load! Make an organizer friend (or be your own organizer friend) and keep an open mind about what jumps you want to do. 5. Buy the good beer to share at greenlight. It’s basically, like, a housewarming that you throw for yourself. You’ll feel at home before you know it.
  14. Image by Joe NesbittLast week, we talked about the mighty kerfuffle that is the pilot-chute-in-tow malfunction. So...who wants to have one? Nobody! Right. So now that we’ve established that, we can get down to the business of avoiding the hell out of those. There are four big steps you can take to lessen your risk of a PCiT, and there’s a good chance you’re currently messing up at least one of them. 1.Cock it up (so it doesn’t cock your jump up).Your collapsible pilot chute is a demanding partner. Her deal is this: no foreplay, no canopy. Most of the time, you’re good about it. You guys have a really established routine at this point, right? From the time you’ve got your nylon laid out on the floor to the time you wrap your legs around it to finish it off, you follow a very predictable routine. Somewhere in there, you give that collapsible pilot chute a tug and get her indicator window nice and blue. Everybody’s happy. But what happens when you get distracted? If you end up ignoring your PC for a surprise debrief or a dance break or an awkward conversation with the meaty contents of the best-fitting freefly suit you’ve seen all week, make no mistake: she’s going to get her revenge. Failure to cock the collapsible pilot chute, after all, is the leading statistical cause of PCiTs. The solution here is simple: focus. Give your pack job the attention it deserves, in the same order every time. (It’s never a bad idea to include that little indicator window on a quick gear check, either.) 2. Do what you’re told.I know. You’re the boss of you, and I’m not your real mom, and manufacturers are basically like corporate drones, and the USPA is a bunch of guys throwing canes and slippers at kids who merrily chase balls onto their collective lawn. You do what you want. That said: maybe you should do what you’re told every once in awhile. This is revolutionary stuff, I know. But the manufacturers’ instructions for bridle routing and main-flap-closing aren’t just there to give you something else to toss giddily out of the box when your new container arrives. As any pro packer will tell you, those yawn-inducing closing procedures differ dramatically between brands. If you’re using the wrong one for your particular equipment, you’re setting yourself up for a container lock. 3. Watch the news.Along those lines: be on the lookout for updates. Remember a few years back, when all those photos came out of closing pins stabbing neatly through the middle of their bridles? It kinda looked like a fabric samurai drama, but it was pretty serious -- several jumpers, jumping different equipment, experienced pilot-chutes-in-tow in this same manner. In response, manufacturers posted updates to their manuals, changing the closing procedures for their containers to lessen the risk. The moral of the story is this: Maybe you’re still doin’ it the old way and have managed to be lucky so far. (Emphasis on: so far.) You can also investigate pull-out -- as opposed to throw-out -- pilot chute systems, if you like to be on the oddball end of technology. 4. Embrace the transient nature of our linear existence.Nothing is forever, dear reader. All seasons pass. All kittens turn into old cats. Your pilot chute and bridle will eventually wear out. Thus is the way of the world. We know you love your pilot chute and bridle. They love you back. They yank that nylon out of the bag for you over and over and over without complaint. They get dragged across the grass and the filthy packing mat and the Arizona desert for you. They get stepped on and sat on and waved around willy-nilly when you need to get someone’s attention on the other side of the hangar. But they can’t do it forever. Collapsible pilot chutes lose effectiveness when their little kill lines shrink. If that line shortens to the point that the PC can’t inflate fully, you will probably end up with a dead pilot chute flapping around above you in freefall while you count to yourself in your helmet. Insufficient drag to pull the closing pin = PCiT. Like many existential tragedies, this doesn’t happen overnight. Have you noticed little hesitations after you throw? Are they getting longer? Have you noticed the aging process creeping up on your little bitty sub-parachute in the form of obvious wear? Cuddle up on the couch with her, read The Velveteen Rabbit together, cry a little bit and give your old, loyal PC a Viking funeral. She deserves it.
  15. At the end of the day, skydiving is a dangerous sport. I’ve lost many friends and even family members– under properly functioning parachutes. We can’t regulate stupid behavior, but we can at least spread good information so more people can make wise decision. So why would someone consider upsizing? 10. Cannot land consistently standing up. If you’re having troubles standing up consistently or even in the same area in all weather conditions, then you need to upsize and take a canopy course to understand the concepts basic flight characteristics. 9. Not current. You can be uncurrent after a winter vacation without skydiving, coming off an injury or just life getting in the way. According to USPA, you are uncurrent if: A-license holders who have not jumped within 60 days B-license holders who have not made a freefall skydive within the preceding 90 days C- and D-license holders who have not made a freefall skydive within the preceding six months DZ policy: Every DZ has their own policy for uncurrent skydivers. Be sure to check in with them before coming out to the DZ to see what you may have to do. Also check the USPA Skydiver’s Information Manual for more info. 8. Jumping at a Higher Elevation. At higher elevations the canopy is going to perform faster and act more responsive because of the air being less dense. So landings will feel faster and turns will feel more aggressive. If you’re traveling to places like Colorado or Utah, you may want to pack a larger canopy. 7. Gained Weight/Wearing Weight. Well, what can I say? Sometimes during the winter, it’s easy to pack on some pounds and that invariably negotiates your wingloading. Also, if you haven’t jumped all winter and you’ve accumulated a new wingloading, you may want to consider getting current on a bigger canopy. Next, if you’re a small girl, or decide to get on a 4-way team, you may be wearing weights. This added weight will definitely make your canopy fly differently than expected. So before making a decision on what canopy to buy or whether or not to downsize, consider the use of weights to make the best wingloading decision for your experience. 6. Reserve Size. Generally, your main and reserve should be about the same size. If you were quick to downsize or couldn’t find the right sized container, but have a larger reserve, with little experience under a bigger canopy, may be a good reason to upsize your main. (Having the same sized canopies also reduces other problems should 2 canopies out occur.) 5. Types of Jumps. Doing big ways? Wingsuiting? Demos? Some jumps may warrant a bigger parachute. When I do world record jumps, I usually opt for my bigger canopy so I’m not fighting my way through traffic and have a larger range of floating. Wingsuiting can cause line twists or other malfunctions and jumping a more docile canopy can help you negotiate them better. On demos, having a lower wingloading will give you more range to negotiate smaller landing areas or areas surrounded by obstacles – as long as you understand the flight dyamics of your wing. 4. Age/Health/Agility. Take an inventory of your overall health. How are your knees? Wrists? Ankles? Eyesight? Depth perception? Reaction Time? These may be considerations to upsize. 3. Attitude/Experience. Someone’s overall experience and attitude about the safety of themselves and others is a vital component in skydiving safety. Disregard for your own experience and/or safety is an obvious sign to upsize. 2. Because You Downsized and You Shouldn’t Have. Having inconsistent landings? Not standing up your landings? Stabbing out your flare? Landing by touching down on your knees first then popping up to your feet thinking it was an awesome swoop? Spiraling in traffic cause it’s freakin’ fun on a small canopy when not necessary? Scared of line twists? Having a hard time kicking out of line twists? Not paying attention to others in the sky? Land downwind for fun? Don’t follow a landing pattern? What the hell is a landing pattern? Don’t understand the flight characteristics of your wing? Pretty much don’t follow the rules? 1. Finally, if you cannot answer yes to all of these questions, you need to upsize: Can you land your main crosswind? Are you comfortable landing crosswind? Can you land your main downwind? Are you comfortable landing downwind? If you had to land out and the only option was a tight area surrounded by obstacles, do you know you could land your canopy accurately? Do you feel that you completely understand the flight characteristics of your wing? Do you understand what happens to the flare, landing pattern, stall characteristics and overall flight characteristics when you downsize? Have you used your rear risers & do you know why and when you’d need to use them? Have you used your front risers & do you know why and when you’d need to use them? Have you performed braked turns? Braked turns for landing? Can you land within 10 meters of a target center at least 5 times in a row? Did you take a canopy course beyond the B-license requirements? When I first started skydiving, I was young and pretty much invincible. I was on the fast track to get on a small canopy and go fast! And it’s all fun, until you get hurt or you watch someone die. I’d seen a lot of crazy things (especially people “getting away” with bad decisions) in my 20-year career, but in 2003, I witnessed my father’s fatal canopy collision. Then without your permission, things change. It’s amazing how death will completely transform your perspective on safety, especially when the sport is your livelihood. We spend more time under canopy than we do in freefall, so this is a moment to check in and evaluate how much canopy education have you gotten? My dad used to tell me, “take stock into your destiny.” So, take that Flight 1 course you’ve always wanted to, finish your B-license canopy training, ask questions, and just know, there ain’t no shame to upsize that thang! How at risk are you? Below is a canopy risk calculator that was created by the USPA, which can give you an idea of just how big of a safety risk you're at with your current canopy and experience level Calculate My Canopy Risk Useful Resources Barry Williams on Canopy Safety (Skydive Elsinore 2013 Safety Day) [Video] Barry Williams on Canopy & DZ Safety (Skydive Elsinore 2012 Safety Day) [Video] Performance Design's "Survival Skills for Canopy Control" Contributors: Melissa Lowe, Barry Williams and Jason Moledzki
  16. admin

    Exit Order Safety

    Brian Germain and wife Laura Kraus launch an exit over Voss, Norway. Photo by Ron HolanThere are many different views on exit order, although only some of them are based in science. The following exit order plan is based on the principle of "prop blast penetration": the degree to which a jumper remains under the aircraft based on the drag produced by their body position. When a jumper assumed a low drag body position, head down for instance, they follow a longer arc through the sky on their way to vertical descent. The fastest falling skydivers are freefliers, which means that they remain under the aircraft longest. If freefliers exit the aircraft first, their trajectory will take them toward, and often beyond the trajectory of flat flyers exiting after them. This fact has been proven time and again in the numerous close calls that have led to the creation of this exit order model. Therefore, the best way to create maximum separation between jumpers at deployment time is to have the FS "flat" jumpers exit before the freefliers, regardless of deployment altitude. Beyond this, we must also consider formation size when planning exit order. Since the last groups out of the airplane are more likely to land off the dropzone, large groups tend to exit before small groups based on the "needs of the many outweigh the needs of the few" principle of human civilization. I concur that this is a good plan, but for another set of reasons. Large groups tend to open lower than small groups due to task fixation and the need for adequate tracking time to create safe separation. This means participants of large formations should open closer to the dropzone. Further, smaller groups have the option of breaking off early, tracking perpendicular to the jumprun and pulling high to compensate for long spots, while the complexity of building a large formation makes it difficult to take such steps toward safety due to the peer pressure associated with the situation. Photo by Ron Holan The Exit SequenceSo this brings us to the preliminary plan of sending the flat flyers out first, in groups largest to smallest, then the freefliers. However, since inexperienced freefliers most often remain under the aircraft for a shorter period of time than vertically oriented freefliers performing perfect zero angle of attack exits, the order should be lowest experience to highest. This also allows the more experienced freefliers to observe the exits of the novices, giving them the opportunity to give helpful advice, and to provide extra time in the door if necessary. If the previous skydiver or group is still under the airplane, do not jump. When in doubt, wait longer. Following the flats and then the vertical skydivers, we have the students and tandems. The order can be varied here, although there are some reasons to support sending the tandems out last. First, landing a tandem off the DZ is safer than landing a student into an unknown location. Second, students can sometimes get open lower than planned, which not only increases their risks of landing off, but puts the instructors at risk of landing off even more as they open lower than their students. Tandems on the other hand have the option of pulling whenever they see fit, which allows the camera flyer to get open high as well. The last groups to consider are those involved in horizontal skydives, such as tracking, "atmonauti" or steep tracking, and wingsuit pilots. The truth is, experienced horizontal skydivers can safety get out of the way of other jumpers quite easily, and can exit in any part of the order. However, in the case of two or more horizontal skydiving groups, plans must be created and followed with vigilance. For instance, one tracking group can exit first and track out and up the right side of the jumprun, while another group can exit last and offset toward the left side of the jumprun. Three horizontal groups on the same aircraft are best handled by adding a second pass, although there is a great deal of room for creative answers when wingsuit pilots are involved. Photo by Ron Holan Timing the ExitsThe amount of time between groups must vary based on the groundspeed of the aircraft. On a windy day, with an into-the-wind jump-run, the aircraft may move quite slowly across the ground, reducing separation between jumpers. This requires significant time between exits, perhaps as much as 15 seconds or more on a windy day or a slow airplane. The separation between groups can be increased quite easily on windy days by crabbing the aircraft with respect to the upper level winds, a practice that has become increasingly common at large dropzones. For a scientific explanation of exit separation, please read John Kallend’s PowerPoint, found here. Many jumpers believe that once the freefall is over, there is no way to prevent a collision. However, given the glide ratio of modern parachutes, we have the ability to close the gap quickly after opening by pointing our canopies in the wrong direction. Given the fact that the vast majority of skydivers will be opening reasonably close to the jumprun, immediately flying up or down the line of flight is pretty much always a poor choice. Therefore, once you have cleared your airspace and pulled, your job is to look for traffic in your immediate vicinity and then fly your parachute perpendicular to the jumprun heading. I like to call this “Canopy Tracking”. Once you verify that the others are open and note their location, you can begin to navigate toward the play area and then to the pattern entry point. This all requires a great deal of awareness and adaptability, as even the best plan can change quickly in a complex environment. The bottom line is this: keep talking. Every load is a brand new set of circumstances, and requires a good deal of thought and planning. Make sure everyone arrives at the loading area no later than the ten minute call to allow for healthy preparation time. Most accidents and close calls could have been easily avoided by skydivers talking to skydivers, and skydivers talking to pilots. Take your time in the door, keep your eyes open and take care of each other. It is a big sky up there, and when we work together, safety is the likely conclusion. Brian Germain is a skydiving safety advocate, and has written numerous books and articles on the topic. He has a regular spot on Skydive Radio called Safety First, and has made over 150 safety related videos, all available through AdventureWisdom.com
  17. Curt Vogelsang captures some hot canopy-on-canopy action. Y’know when you don't feel like getting out of bed in the morning? Your main parachute is likely a lot brighter-eyed and bushier-tailed than you are, but every once in a good long while it just doesn't feel like getting out and doing its job. Y’know? Relatable. Kidding aside: When you throw your hand-deployed pilot chute but the container stays closed -- trapping the main deployment bag inside, helpless to deliver you a parachute -- you’ve gotchaself a pilot-chute-in-tow. In other words: you’ve got nothing out, which makes you the clenchy, concerned (and hopefully very temporary) owner of a high-speed mal. You’d better get on that, buddy. Stat. But how? Deploy the reserve immediately or cut away first and then deploy the reserve? One Handle or Two Handles: The Cagematch If you’re not sure which you’d choose,* you’re certainly not the first. This particular point has been the subject of roaring contention since the invention of the BOC, my friends. (Guaranteed: the comments section below will corroborate my statement. I can sense people sharpening their claymores and dunking their arrows in poison even now.) There’s a school that says -- well, duh -- get your damn reserve out, like right now what are you waiting for. There’s another school that calls that school a bunch of mouth-breathing pasteeaters. The latter group insists that you'd better go through the procedures you know lest you mess it up when it counts. They usually follow up by spitting on a photograph of the first group’s mother and wondering aloud why the first group is even allowed to skydive. Then they start punching each other. Images by Joe Nesbitt The USPA Skydiver’s Information Manual doesn’t make a move to break up the fight. It stands clear of the flying arms and legs and says, “Y’know -- they both kinda have a point.” Section 5-1 of the manual says this, verbatim: “Procedure 1: Pull the reserve immediately. A pilot-chute-in-tow malfunction is associated with a high descent rate and requires immediate action. The chance of a main-reserve entanglement is slim, and valuable time and altitude could be lost by initiating a cutaway prior to deploying the reserve. Be prepared to cut away. “Procedure 2: Cut away, then immediately deploy the reserve. Because there is a chance the main could deploy during or as a result of reserve activation, a cutaway might be the best response in some situations.” Let’s look a little closer at the options, then, shall we? Option One: Not Even Gonna Bother With That Cutaway Handle. Pro: Immediately yanking out that reserve saves a step. When AGL counts (and golly, doesn’t it?), saving a step can save a life. Many skydivers are quick to point out specific incidents in which jumpers with PCiTs have gone in with sealed magical backpacks, having failed to pull both handles (or pull any handle at all) while the clock was ticking. Gulp. Con: It takes the pressure off (in a potentially bad way). As the reserve leaves the container, there’s a chance that it can take the sealing pressure off the flaps that are keeping the main container closed. The main can then leap to freedom and deploy at the same time as the reserve. At this point, you might wind up with an entanglement, a side-by-side, biplane or downplane to figure out.** Option Two: Get Off The Field, Main Parachute. Reserve, You’re In! Pro: It’s the same stuff you’ve been taught to do for every other reserve-requisite malfunction. ...If you initiate the reserve deployment clearly, confidently, and as early as possible, of course. After all: making a one-off exception for a single kind of malfunction can be tricky. A jumper might well spend a little too much time thinking it over (‘Am I going for my reserve handle first right now? ‘Cause that’s weird. Is that okay?’) when they should just be yanking the stuffing out of their emergency handles. Going through the real-life motions of the little dance you do before you get on every load makes more sense to your body, for sure. Con: You’re adding more complexity to the situation than you may realize. Especially if you don’t have secure riser covers, the (jealous?) cut-away main risers might sneak out of the container and grab for the reserve as it deploys. Another thing: the main is very likely to wiggle free, detach from the harness as soon as it catches air and do its best to entangle with your Option B. The latter kerfuffle is made much more likely when you add a single-sided reserve static line to the mix, turning the already-dismaying situation into something of a tug-of-war. Neither of these choices sounds like the cherry on top of a lovely afternoon; I know. At some point, however, you may be forced to make one. If you do, you’d better have a plan in mind. Not in the mood to make that choice? Me neither. Luckily, there are some steps you can take to better your chances of never seeing a PCiT -- and in next week’s article, I’ll tell you what they are. --------- *If you have a Racer (or any container with a cross-connected RSL), you do not have a choice. You must pull the reserve without cutting away. Do not pass ‘go,’ do not collect $200. In that particular configuration, the main will choke off the reserve if the cutaway has been pulled. If this unnerves you, get thee to a rigger to discuss it. **Head over the PIA.com to check out a handy study they did in 1997 regarding the management of two-out situations. It’s called the “Dual Square Report.”
  18. One of the most dreaded conditions of all is the no wind scenario. This fear is so profound that many jumpers in fact avoid jumping in no wind conditions. Although landing with the benefit of a headwind is unarguably easier, there are specific methods that markedly improve the chances of standing up your landing. Here are a few tips that will help you to land softer and safer when the wind goes away: 1) Make sure you level off within touching distance from the ground. If you finish the flight with some space between you and the earth, you will have more than just forward speed to deal with at the end of the landing. All parachutes stall above zero airspeed, which means that as soon as the extreme slow flight capability of your parachute is attained, it will drop you into the ground with both forward and vertical movement. The best way to deal with this is to be sure that you have already arrived at standing height when the stall breaks. That way, the only remaining kinetic energy is forward movement, which can be diminished by taking a few controlled steps. 2) Make sure your brakes are short enough. Most manufacturers set the brake lines to allow for a certain amount of slack so that when the front risers are applied with the toggles in the hands, there is no tail input. This, coupled with shorter risers (most parachutes are set up for 21 inch risers), will prevent you from reaching your parachute's slowest flying speed. With the help of your rigger, shortening the brake lines is an easy task. Take out not more than one inch at a time and give it a few jumps before taking more out. 3) Keep the parachute over your head. Any tilt in the roll axis will result in a premature stall of the parachute, which will drop you into the ground while you still have ground speed. This is due to an effect known as "load factor". When a wing is in a bank, it requires a bit of increased angle of attack to keep it flying at the same height or descent rate. This results in an increased relative weight, which in turn increases the stall speed. Keep your eyes looking down the "runway" and you will be able to notice variance in your bank angle easier. Making smooth corrections to the bank angle all the way to the end of the landing will result in a softer touch-down and less forward velocity at the end of the ride. 4) Be sure that you are finishing the flare. Keep smoothly adding brakes until you run out of arms, or ground-speed, whichever comes first. In other words, if you are flying into a significant head-wind, flaring all the way down will make you go backwards, as the speed of your parachute will be less than the speed of the wind. Flaring straight down is the only way to accomplish a complete flare, as stylish outward sweeping of the arms out to the sides or to the back will only result in a stylishly ineffective flare. The brake lines can only work if they are pulled. 5) Assuming that a PLF is not necessary, put one foot under your spine, as the "main landing gear", and the other out in front as the "nose gear". That way you will not plant both feet at the same time and pivot onto your face. Slide your main gear along the ground as long as you can, and then when the friction finally grabs your foot, take that first step onto the front foot. 6) Loosen your chest strap and lean forward in the harness. This will allow you to get your weight over your "landing gear", rather than back on your heels. The parachute will increase its pitch angle as you progress through the landing, but your body doesn't have to tilt in accordance. Freeing your body from the pitch of the system will allow you to feel more comfortable finishing the flare, as you will not feel the urge to let up on the toggles as you put your feet down to get to a more balanced pitch angle. 7) Let the wing sink down below standing height during the second half of the swoop, and then use the canopy's lift to bring you back up to standing height. Referred to as the "Seagull Landing", this allows you to arrest any excess forward speed, as you will be in a climb at the last part of the landing. Be sure not to climb above standing height as you do this, as that will result in a drop at the end that will put you on your face. 8) Practice slow flight up high. The more comfortable you are with the low-end range of your canopy's performance envelope, the longer you will be willing too keep your toggles down at the end. Fear of the stall results in incomplete flares, as well as letting up the toggles at the end of the landing. Keep the canopy in brakes for at least 30 seconds (up high), and perform smooth turns right and left. This will help you fly your way out of any bank angle created by an asymmetrical level off during the flare. 9) Believe it is possible to land perfectly. It is. Only when a pilot thinks: "I am going to crash" is the crash inevitable. 10) Get video! There is no greater tool than actually seeing yourself land. The best way to get filmed, I have found, is to film other people. Landing in no wind can be great fun. Ultimately, this is how we counter the fear of landing our parachutes. If you lean forward into the experience, your positive body language results in more fluid, appropriate actions that actually improve your situation. When you are comfortable with landing in no winds, you begin to actually look forward to those zero-wind sunset loads. Scooting across the ground with maximum forward speed can be incredibly enjoyable when you know you have the skills to handle the situation. In the end, the only way to achieve this is to jump on a regular basis, and enjoying the learning process is how this is reinforced. Find something about every landing that you can smile about, even your crashes. Everything that is not the path shows us where the path is not. Happy Landings! Bryan Germain www.CanopyFlightInstructor.com Editors Note: Also see - Another Look at No-Wind Landings by Scott Miller
  19. Sylvia Tozbikian wiggles her way back to the DZ after an off landing in a graveyard“Off” ain’t such a bad thing. As skypeople, we love “off.” Offbeat. Offhand. Offside. And, y’know -- we’re all a little off, really. Off landings should fit right into our oddball little world. Unfortunately, lots of skydivers tend to be ill prepared for an unscheduled landing out in the real world. Are you one of ‘em? Here’s how to get ready for a surprise skydiving adventure. 1. Be a nerd about it. Sure, the airborne life throws you curveballs sometimes -- but there are variables here that you can control, y’know. Work ‘em. If you only ever land that thing in a schoolbook configuration in the exact same landing area, you’re not going to enjoy the steep learning curve of an off landing. Hang out with a canopy coach for a weekend to workshop your braked flight (and, y’know, braked landings) in a structured, feedback-rich environment. The more thoroughly you train your body and brain to execute these maneuvers, the less you’ll panic when you look down and realize you’re hanging over an endless sea of potential ouch. Also: always jump with a charged method of communication. 2. Speak up. Very likely, your off landing is going to be your fault, and it’s probably because you didn’t pay attention (to winds aloft, to the jump run, to your opening altitude, to where you were pointing your pretty new wingsuit…). If it’s the pilot’s fault, you should know it by the time you’re standing at the door and lookin’ down. If the spot is off, don’t leave the plane. Ask for a go-round. 3. Look out for yourself. If you’re at the caboose end of a group and you can’t spot from the door, make a habit of quickly spotting as soon as you run out. If you notice that your compatriots failed to notice that they were getting out of the plane somewhere in the next state, evaluate your options. If it’s safe, then you should peace out earlier and pull higher, crossing fingers that the extra altitude will get you home. That said, don’t be a dick. If the particular skydive you’re doing is safer for everyone if all members conform to the freefall and breakoff plan, then congratulations: you’re landing out. 4. Curb your optimism. At this point in your journey into offland, you might be under one of two available parachutes. Your first responsibility after ensuring that whatever’s out is controllable is to realistically determine where you’re headed. If you feel like you just-might-maybe make it to the main LZ, make sure you’re not just-might-maybeing your way into a power station or highway or forest or whatever might be in the intervening territory. If you’re not sure -- or if the middle ground is an alligator farm -- then you should bin that Pollyanna attitude and get real. Put your entire brain on the task of on finding a safe alternative that takes into consideration your current position and the wind direction. 5. Mind invisible canopy-eaters. Once you’ve picked a spot and are toodling down to make your acquaintance with it, you should start getting as picky as possible. You’ll obviously be headed for what appears to be an open space, but wait -- are there invisible monsters lurking? Trees, buildings and other solid objects can throw serious turbulence if they’re upwind (and livestock can wander into the picture very quickly). Keep that in mind as you’re planning. 6. Play the field. As much as possible, be a commitmentphobe. Make sure you don’t have blinders on to other landing areas that might save your ass in the event of surprise fences, power lines, turbulence monsters, stampeding herds and other obstacles you didn’t notice from on high. 7. Embrace it. If you’ve always been on, you can be assured that off is coming. Get real and get ready, and you’ll be much better...off. (Snicker, snicker.)
  20. And What You Can Do To Fix It Image by Gary WainwrightI’m not a teacher. I’m forehead-slappingly, eyes-avertingly, hide-your-facingly terrible at it, actually. Luckily, I’m lucky enough to count as friends some of the best airsports teachers in the world. (Whew.) This article is a collection of short answers from several of these. They’re top-level coaches/instructors/examiners, and their experience spans in several disciplines. They’re also incredibly wise, beautiful souls. I went to them with this question, so important for all of us students on the edge of the world: If you could cure all your students of one thing they do that gets in their own way, what would it be? Here’s what they had to say. Listen up. “Rushing. I see a lot of students that are determined to pack too many things into one jump. Then they end up flailing; when they don't nail the first part, they're confused as to whether to go back and work on the first part or move on to the next part anyway. They lose a lot of time, and they get very frustrated. Pick one thing. Do it perfectly. Stop. Then move on to the next thing.” - Joel Strickland: Freefly & Tunnel Coach; Double British National Champion, Freefly & Freestyle “If I could cure all my students of one thing, it would be to erase the idea that everything about them is static and unchangeable. Once a student believes in their own self-efficacy -- believes in the idea that all that they are is changeable in a positive direction -- believes that everything from their physical reactions to their fears can be modified and updated -- anything is possible for them to learn. - Matt Blank: Wingsuit Skydiving Coach, Lightning Flight Wingsuit & Freefly School “I’d get them to stop watching YouTube. That creates pre-conceived notions of what they should be doing. Either that, or I’d encourage them not to freefly from jump 26 to jump 199 -- when they do, their belly skills suck dust when it comes to their FFC.” - Douglas Spotted Eagle, Wingsuit Skydiving Instructor “Often, they don’t respect the progression and embrace their inexperience. You must do both. It makes sense to one day aspire to wingsuit BASE jump from a cliff, but it can be difficult to focus your efforts where they are the most effective if you’re fast-forwarding years into your career. Your instructor, who you possibly selected because he or she wingsuit BASE jumps, wants you to focus more on finding the range of your beginner or intermediate wingsuit -- and recovering from instability in it -- before talking about how the wingsuit BASE start works. I find that many students seem to want faster returns for their efforts, and they seem to get frustrated with their own learning process. I can appreciate the way that we latch onto that dream of human flight, but i want to pass on an outlook where each individual skill is a whole and complete activity by itself that takes time and effort to master before being combined with other skills. So when you combine a set of skills (for example: rigging, canopy control, site selection, weather, bodyflight, wingsuiting and experience in the subterminal base environment), then you can make smart decisions. When you lack experience or skills in a certain area, you begin to lose the full picture.” - David Covel: Wingsuit Coach, BASE FJC Instructor, AFF Instructor, TI “I would cure them of self-doubt. It takes courage and confidence to challenge yourself to change your behavior and improve your skill in any area of your life. It's amplified when applied to an extreme sport. A lack of belief in your own potential can manifest itself in many ways: fear, nervousness, indifference even laziness. Understanding that you have the control and ability to consciously change your own actions is a very empowering fact that can unlock all levels of improvement. You have to commit to change.” -Maxine Tate: Canopy Piloting Instructor, Flight-1; US & UK National Champion; Coach Examiner; AFFI/Evaluator “I would cure this one thing that gets in students’ way: hubris. Assume you know nothing about the sport you are learning. No one assumes that they know everything about the sport they are learning, but the worst students just aren't really listening when the instructor is talking. In general, girls are better at listening than the boys. I think with the boys, especially with really good skydivers, there is a certain amount of ego that prevents accepting that there are things in BASE that they know nothing about. Think about this: almost EVERY BASE course that my partner Marta [Empinotti] and I teach, we learn something. This is because we know we don't know everything, so we keep our eyes and ears open, hoping to learn something new that we can analyze, assimilate and share with others in our beloved sport.” - Jimmy Pouchert: Co-Founder & Chief Instructor, APEX BASE; Freefly Coach “Over-amping. The ability to breathe even (especially) when scared, and to get into a focused zone before a jump, makes the biggest difference between a skydive that feels rushed and out of control and one in which a lot of learning and growth takes place. Even very experienced skydivers often feel nervous before their first wingsuit jump or when trying something new. The key is to trust that your ground preparation will serve you in the air, and to focus on one thing at a time starting with deep breaths, releasing tension, and visualizing the perfect exit.” - Taya Weiss, Owner/Head Instructor at Lightning Flight "We all have a tendency to look at the negative first, so I would remind all my students to start by pointing out three positive aspects about their previous skydive and then focus on one or two -- maximum, two -- areas of improvement. Positive reinforcement, combined with constructive criticism, goes a long way towards improving performance and attitude." - Lawrence de Laubadere: Freefly Coordinator, Lightning Flight Wingsuit & Freefly School “If I could cure all my students of one thing, it'd be expectation. As I tell them all, “If it's not fun, it's not worth it!” Learning to fly is not unlike so many other things in life: sex, making friends, etc. The harder you try, the harder it is. When I try to teach someone something in the tunnel, they often feel (natural) disappointment if they can't do it how they see others doing it. But it's not my goal to get you doing perfect layouts from the start. I'm looking for the components from my students: staying relaxed, looking where they should be, keeping the legs straight, etc. All I need them to do is smile, have fun, and keep making those baby steps. No expectations, no disappointment. In the end, I think attitude is one of the trickiest skills in progression.” -Dave Rhea: Instructor, Bodyflight Stockholm
  21. admin

    Stalling For Success

    Image by Andrey VeselovStalling For Success: What You Don’t Know About Stalling Your Canopy Could Smack You. Hard. This, suffice it to say, could end badly. There was a balloon jump. (Whee!) The winds picked up at around 3,000’ and shoved your jolly crew rather far off-DZ. (Um…) You jumped anyway. (Whee!) You over-rotated your super-magnificent aerial and pulled a titch lower than you wanted to. (Um…) Your landing options are now -- well -- limited. And a little heavy on the obstacles. And kinda tiny. And now you’re on final. (Uh-oh.) Do you know where your stall point is? Probably not. Right about now, I bet you wish you did. In this regard, skydiving is unusual. After all, stall training is a foundational part of the training process in other air sports (paragliding, specifically), and there’s no question it’s vital. Considering how important it is to know the exact point at which your equipment stops flying, it’s surprising how few skydivers – even advanced ones – have seriously investigated the stall point of their canopies. Perhaps this is because the transition between the very-slow-flight and no-flight modes produces a stomach full of butterflies. It could also have something to do with the fact that skydiving canopy rides are much shorter than paragliding flights -- and, because the skydiving canopy is trimmed to fly down instead of up, comparatively easy to fast-forward. No matter what the root cause, the fact remains: knowing your stall point is an essential component of safe and skilled canopy flight. And there’s probably a lot that you probably don’t know -- yet. Here’s the skinny. 1. You aren’t really in control up there.Sorry, buddy. Without understanding your system’s stall point, you are not in full control of your wing. Most notably, you’re at a significant disadvantage during the landing process, as the execution of a flare is the approach to a stall in very close proximity to the ground. 2. It’s not about slow flight. It’s about no-flight.The lion’s share of ram-air canopy pilots believe that the definition of a stall is directly related to slow airspeed – that the “stall point” is when the canopy is flying too slowly to produce lift. Sound familiar? Yep. Unfortunately, while it often ends up being the case in practice, this isn’t actually true. The true “stall point” is defined as the moment when the parachute is no longer producing lift, no matter what the airspeed when you enter the maneuver. Bear with me here, because this has bearing on your jumping career. When a ram-air airfoil reaches an excessive “angle of attack,”* a stall results. As relative wind moves over an airfoil, it “curls” over and downward to create lift. However, when the pilot adjusts the airfoil to a higher angle with respect to the relative wind – often, but not always, by pulling hard on the brakes – he or she is effectively building a nylon wall against that relative wind, making it harder for the relative wind to follow its usual path and create lift. Finally, it reaches a point where it can’t. At any point that the angle of attack reaches that point, no matter what the airspeed, the pilot has a stall on his or her hands. When you understand the stall as a function of AoA, you can easily see how a ram-air airfoil can stall at high speed as well as low speed. This leads to an important fact: a higher-loaded wing will stall at a higher airspeed than its more lightly loaded counterpart. This is just another of the galaxy of reasons why it’s important to downsize your canopy thoughtfully and knowledgeably. 3. You can choose your own adventure.Initiating a stall for the first time is not unscary. Don’t just stab the brakes and cross your fingers, though: manage the process. The rodeo quality of the stall depends on the type and sharpness of the inputs you use to get into it, and on your technique for stall recovery. Stalls entered using slow inputs tend to initiate a stall from slow speed and slight sink, making the stall more docile than those entered using quick, brutal inputs. The more aggressive and uneven you are in your entry, the more likely you are to introduce a bank angle at the entrance of the stall. This will stall the lower wing first, which can often result in a spin (and, maybe, line twists) during recovery. Another bit of advice: Don’t just reach for your brakes. Jumpers tend to initially experiment with stalls by monkeying around with their toggles – mostly, because they’re more familiar with those controls. That’s not really the best idea. Though rear-riser stalls “kick in” more suddenly than stalls initiated with the brakes (as they profoundly and quickly change the shape of the canopy using the C and D lines), recovering from them is smoother and easier.** ...and, of course, pull high. The “lab” is up at a nice, cushy altitude. Make sure to stop your experiments with a lot of margin between you and the dirt. 4. You don’t have to go it alone.Look at your canopy’s manual to familiarize yourself with the stall dynamics you can expect from it. If there’s no information regarding stall behavior in the manual, contact the manufacturer and ask about it. They’re happy to help. So are canopy coaches. Ask, ask, ask. Then you might not have to ask the farmer to disentangle you from the fence, collect your scattered dignity and help you hobble to the road. That’s worth it, no? Here’s a great little video by AXIS Flight School that demonstrates a rear-riser stall. In this video, you can closely inspect the canopy’s reaction to the stall input. *The angle of attack, or AoA, is the angle between the cord line – visualized as a straight line between the leading edge and the trailing edge – and the relative wind that the airfoil is moving through.
  22. How to Avoid Spinning Malfunctions Image by Oliver NöthenAh, to be swung madly around the ballroom of the sky. If you like that sort of thing, of course. Most of us, y’know, don’t. Even though they’re eminently preventable, spinners remain a very statistically significant cause of cutaways. There’s good news, however: A little attention will go a long way towards making sure you aren’t dancing downward under a misbehaving main. Here’s how to get your body, brain and gear set up right. 1. Are you bungling the basics? If spinning mals come up more than occasionally for you, consider whether you need to send yourself back to packing (or body-position) school. Might be the case. 2. Are you just being loopy? Back when side ponytails were sexy and just about everything smelled like Teen Spirit, the skydiving industry used Velcro to secure toggles to risers. When manufacturers made the switch to the velcro-free designs we see now, they forgot about something vitally important: the long, floppy bights in the steering line that were now suddenly exposed to the rodeo ride of the deployment process. Those mile-long bights took the opportunity to lasso anything they could. A particular favorite: hands. One misplaced toggle grab, and a skydiver could easily find him/herself in a compromising bondage situation with their control lines. The bights happily welcomed guide rings into the act. It was a ready-made recipe for a super-solid spinner, and it was ugly. Soon, every single manufacturer’s rig designs had integrated line stowing features (“keepers”). There’s a reason the changes were made: as a jumper, you need that line tucked safely away until you’re good and ready to release the brakes. That said: Many of those old risers are still around, unmodified. Even more bafflingly, some skydivers don’t bother stowing the lines during the packing process (presumably, to save 20 seconds or so). If that’s you, you know what to do. And if you have Velcro on your risers, for the love of god check it for airworthiness. 3. Are your cat’s eyes conspiring against you? Toggles love the cat’s eyes of brake lines. They dive at the chance to snuggle and lock in a spinny embrace. It’s no wonder that’s the case: after all, their relationship is really hot. The heat that’s generated by the slider’s travel over the lines has a shrinking effect on the system, creating a kind of Chinese fingertrap for your toggle seating. With one toggle in and one toggle out, you’re going to be going for a ride. A rigger can quickly suss out if your cat’s eyes are in good shape: big enough for the toggle to pull out smoothly, but not so capacious that the toggle’s fat bits can pass through. If they need replacing, do it. 4. Do you know when to let go? Spinning malfunctions are sneaky bastards. For all their preventability, they have killed people. Make no mistake: Once you’re looking at one, you need to take it seriously. The most important thing you need to remember is this: a spinning malfunction is not a line twist. When you’re under a docile, level main that’s flying cheerfully along as you swear at it, you’re looking at a line twist. When you’re not directly below a canopy that’s flying level -- when it’s flinging you outwards as it heads for the ground -- you are on the business end of a spinner. The first is an inconvenience. The latter is a mal, and you’d better get on it. As wing loading increases, so does the violence of the spin, and the likelihood that you’re going to kick out of it quickly dissolves. So: Don’t fight it. Just get rid of it. Take some quality time with your reserve. You’ll be glad you did.
  23. admin

    Deployment Emergencies

    Common ripcord and hand-deployed pilot chute malfunctions are the lost handle and the hard pull. Submitted by plante Lost Handle Lost handle or out-of-sight hand-deployed pilot chute. Some ripcords are held in place by elastic webbing or Velcro® cloures. If the ripcords come out of these places, they may be blown out of your sight. Some puds (knobs or handles for hand-deployed pilot chutes) attach with Velcro closures, and some are stowed in elastic pockets. There are pros and cons to where these pilot chutes and deployment handles should be mounted. Either one may separate from the container and blow up behind you. Search for the ripcord (one time only) by following the harness to the ripcord housing with your hand. Search for a hand deployment device (one time only) with your hand by following the container to the area where it is supposed to be mounted — perhaps even as far as the closing grommet. If you can’t locate the handle immediately, pull your reserve ripcord. Practice this on the ground periodically. Lost handles and hand-deployed pilot chutes can also occur after the pull if you fail to pull far enough. Make sure you pull the ripcord all the way out of the housing, or if using a hand-deployed pilot chute, pull the pud to arm’s length before you release it. Hard Pull The hard pull may be caused by a bent or rough pin, a hand-deployed pilot chute bound up in its pouch, or you may have packed more canopy in the center of the container instead of filling the corners. If you feel resistance to your pull, give it two more quick tries (perhaps even with both hands while maintaining the arched body position) and then if that doesn’t deploy the main parachute, pull your reserve ripcord immediately. After a number of jumps, it is normal to become somewhat complacent about the pull; you may give it a relaxed, half-hearted jerk. The pull may take as much as 10 kg (22 lbs.) of force, so pull again. If continual hard pulls are bothering you, you might choose to spray a non-petroleum-based silicone or Teflon® fluid on your ripcord cable or your closing pin and your closing loop. This will make quite a difference and it will last for many jumps. You may occasionally have to do it again as dirt and grime builds up on your pin or ripcord cable system. Inspect your system for any signs of roughness. If they exist, get a rigger to replace the rough component with a smooth one. Pilot Chute Hesitation A problem you could have with your reserve deployment, or a main with a spring-loaded pilot chute, is the common pilot chute hesitation. Hesitations can happen to hand-deployed mains but they are not as common. Hesitations occur when the pilot chute momentarily flutters in the low-pressure area behind you rather than catching air. The hesitation may be caused by a bent or weak pilot chute spring, but usually the pilot chute is just sitting in the dead air space created behind you when you are in the stable position. Sometimes the pilot chute jumps upon release but fails to travel far enough to get a grip on the air rushing past you. It may drop back down on your back and just bounce around or just lay there. If it was hand-deployed, you may not have given it a good throw. To correct the problem, you may turn on your side during the post exit or pull count, allowing the airflow to inflate the pilot chute and pull it free, you may peek over your shoulder after pulling the ripcord, or you may sit up to dump (deploy your canopy). This last method of pulling, then sitting up (almost the start of a backloop) also reduces the opening forces on your shoulders, but it can lead to other problems such as trapping a tight-fitting deployment bag in its container. Consult with an instructor who is familiar with your system prior to attempting this type of maneuver. Pull-out v. Throw-out The pull-out and throw-out pilot chutes are preferred by experienced jumpers, but students (except IAD students) use the ripcord and coil spring pilot chute combination. For a detailed explanation of these three systems, see the chapter on equipment. Trapped Pilot Chute If the pilot chute is not properly stowed in its pocket, it may bunch up and jam when you try to extract it. The trapped pilot chute results in a hard pull that may or may not be cleared. If you find you have a hard pull, try one more vigorous pull before you go for your reserve. Pilot Chute In Tow Pilot chute in tow may be short or long. It is short when the pilot chute bridle is looped around something such as a harness strap. (A proper gear check could have avoided this problem.) If you have one of the rare bellyband mounted throw out models, make sure that the bellyband is not twisted. If the pilot chute bridle is wrapped around the harness (such as on a twisted bellyband or leg strap), tugging on it will only result in a (short) trailing pilot chute. Check the bridle routing during packing, have it checked in the equipment check prior to boarding the aircraft and check the routing again prior to exit. Twisted bellybands and twisted leg straps are a significant cause of pilot chutes in tow. The pilot chute in tow is long when the pilot chute pulls the bridle to its full extent but does not pull the pin securing the main container. The failure may be due to a damaged pilot chute (producing insufficient drag), a rough pin, a tight main container (canopy stacked too high), or a closing loop which is too short. The long pilot chute in tow is more likely on sub-terminal velocity jumps. Make sure the bridle-pin connection is not worn, that the pin is smooth and curved, not straight (unless it is supposed to be such as in pull-out pilot chute systems), and that the locking loop is not too short. If you are faced with a long pilot chute in tow, never try to clear it. A recent USPA article (Parachutist, June 1997) stated that if you have a pilot chute in tow, deploy the reserve immediately. Therefore, it is treated as a total malfunction. Other experts in the field take the position that if there is anything out behind the container, including a spring-launched or hand-deployed pilot chute, execute a cutaway and reserve deployment immediately. Note: Most student equipment is Single Operation System (SOS) oriented. This means that pulling the reserve handle will execute the cutaway (disconnect the main risers) then deploy the reserve all in one smooth action. A two-handle system requires a separate cutaway handle to be pulled to disconnect the risers, followed by a pull of the reserve ripcord. How to handle a pilot chute in tow has been the subject of great debate and much beer has been consumed discussing it. While there are exceptions and strong feelings about what has been stated above, time is usually too short to consider them. After the reserve starts to deploy, the main container may go slack enough that whatever kept it closed is no longer doing so, therefore the main may start to deploy. If the main was disconnected from the harness by the action of a cutaway, it will probably not be anything more than a temporary nuisance. However, one must always be prepared for possible entanglement of the two canopies whether a “cutaway” has or has not been performed.
  24. Image by Brian Buckland It is common knowledge that wing-loading has profound effects on the way parachutes perform. Furthermore, it appears that even if the wing-loading is exactly the same between two otherwise identical parachutes, different size canopies fly quite differently. In other words, if you fly a 210 square foot parachute of a given design with lots of additional weight to achieve a loading of say, one pound per square foot, a 150 at the exact same wing-loading will usually have a steeper glide ratio, faster turns, and demonstrate a longer recovery arc following a high airspeed maneuver. This means that, regardless of the wing-loading, all small canopies are high performance, and should be treated accordingly. There are many explanations for this non-linear relationship, and in this article I will discuss some of the most significant governing variables. Test flight data shows us that small wings, regardless of wing-loading, will be more radical than their larger counterparts, all other design aspects being equal, however the degree to which they are different depends of the model of the canopy. Nevertheless, the trend is consistent and predictable. The most common explanation for these differences is that it is due to differences in line length. Smaller canopies do have shorter lines on the whole. Although it is true that some aspects of a parachute’s performance increases as line length reduces, this only applies to mobility about the roll, pitch and yaw axis. The effects on recovery arc tend to have the opposite response to line length. In other words, a parachute with longer lines tends to exhibit a longer recovery arc. To explain these counter-intuitive effects, we must look elsewhere for an explanation. The other aspect, previously unconsidered, is the relationship of the canopy's internal volume to its surface area. Essentially, the volume displaced by the airfoil can be thought of as a key aspect of the overall DRAG. Of course the shape of the wing itself is vitally relevant to the drag coefficient, but for the purposes of this discussion, let’s focus on the effects of drag from the perspective of simple air displacement, like a footprint in the sky. The fatter the airfoil, the more drag it will exhibit. This means that a “fat” parachute will sit at a higher angle of attack in full flight, based on the balance of power between the airfoil's drag (D1) and that of the suspended load, the jumper (D2). Further, the drag value of a “fat” airfoil will increase markedly with airspeed, and therefore large objects will suffer more drag than “skinny” airfoils at high speed. The wing, therefore, will “want” to return to the overhead position more aggressively on fatter airfoils, as a general rule. Let's take those aerodynamic principles to the realm of parachute sizing. When a parachute design is scaled, for the most part, the entire wing is scaled simultaneously. This is the same geometric progression as a matchbox car: same three dimensional proportions, but a different size. When we want to make a parachute larger, we simply multiply each dimension by a “scale factor”, a single number that will result in the size change we desire. When we apply this mathematical model to parachute designs, we create an unwanted effect: disproportionate scale factors relating to area and volume. Simply put, the number we use to scale the parachute is based on the "square footage" of the wing, and this is of course, a square function (X²). The volume on the other hand, is governed by a cube function, (X³). This means that when we increase the height of the rib at the same rate as the span and the chord, we inadvertently make the wing too fat as we scale upwards, and too thin when we scale down. This is one of the reasons why a 120 flies very differently than a 170, even at the exact same wing-loading and body drag component. The wings only appear to be the same, but they are most decidedly not the same from a volumetric perspective. So, one might say, why don't we make the height of the airfoil on smaller wings greater, and that of larger wings smaller, proportionately? This is sometimes done and it works to a certain degree. However, if we were to search for a formula that would allow us to scale the volume at the same rate as the area, we would have to keep the rib height the same on all sizes of a design. I worked this out with a brilliant Tasmanian mathematician on flight back from Sydney many years ago. A 120 with the same rib as a 190? That doesn't quite pass the gut check, does it? Only the middle sizes would fly right, and beyond a few degrees of freedom, the system would collapse into chaos, because the fat little wings would have too much drag to be efficient and the big wings would have too little lift to land well, and would be prone to collapse in turbulence due to their flimsy nature by virtue of their low volume. A simple answer does not appear to exist, at least not yet. The heart of the problem is the fact that our industry has grown accustomed to the use of "pounds per square foot" as our way of quantifying parachute size. This leads to the erroneous belief that a given "wing-loading" will result in similar performance for all parachutes regardless of size. This is most certainly not the case, and is dangerously misleading for light weight jumpers striving for that magical one pound per square foot wing-loading. A 120 is inappropriate for someone with less than 100 jumps no matter how much they weigh. So, what do we do? Firstly, we honor the differences in parachute sizes, and downsize very carefully. We make our steps downward based on actual ability and frequency of jumping, and we look for any excuse we can to upsize. In addition to remaining conservative with regards to canopy size, we must go to greater lengths to understand the nature of performance and size. If it is true that performance trends do not appear linear with regards to parachute size, then perhaps the solution is a curved ruler. To that end, I have offered a complex sizing chart to the world that reflects the non-linear nature of parachute sizing and performance for the purpose of downsizing guidance. This easy-to-operate chart has been adopted by many national organizations and local dropzones as the official guidelines for parachute size relative to experience. Born from a brilliant but arguably conservative Swedish chart created by my good friend and colleague, Ola Jameson, who was the Head of Safety (Riksinstructor) for the SFF at the time. My somewhat less conservative version of the “sizing chart” offers suggestions for parachute size relative to weight, rather than simple wing-loading alone as the defining factor. This allows the recommended parachute size for a heavy person to be a higher wing-loading than that which is suggested for a lighter person. It is available HERE. The sizing chart does not suggest when the jumper should downsize, but rather limits the degree to which they should decrease their parachute size based on the complex aerodynamic principles effected by wing geometry. The "chart trap" is always a risk with such things, when jumpers automatically step down in size because the chart suggests that a change is reasonable. Decisions based on parachute size and design should always be made based on the actual ability of the jumper, and the other governing factors described in the 22 pages of modifying text that follow the chart. Another consideration I will now put forth to the skydiving community is a fundamental change to the way we define parachute size. Based on the discussion above, a two-dimensional analysis is insufficient to describe what a parachute will do in the sky, and "pounds per square foot" is a very limited 2-D relationship. I suggest that a better model for parachute size definition is Pounds (or kilos) per Cubic foot (or cubic meter). The metric numbers would be far easier to work, if we can get the Yanks and Brits to let go of the Imperial system; but we have to pick our battles, don't we. By using lbs/ft³, we will effectively remove the 2-D bias from the "ruler" as it were, and make the relevant differences more numerically obvious. It may sound like a radical idea at first, but so was the ram air canopy when that showed up, but look how well that worked out. Just because a change is difficult does not make it less necessary. In the interest of moving this new paradigm forward, and in the spirit of the immortal words of Mahatma Gandhi, I will be the change I wish to see in the world. Here are the volumes of my parachutes. It is my hope that other manufacturers will follow suit, in the interest of transparency of our parachutes’ designs, for the good of the skydiving public. The topic of parachute performance prediction is vast, and must continue to be discussed in scientific terms. We must do this because, as one of the few (mostly) self-governing branches of aviation, we are the only true experts in our field. We are the ones who must think outside the old box of established paradigms, and change when change is necessary. We will continue to improve our sport in every way, simply because we love our sport so much that we want to know more, and grow more. The universal passion for knowledge exhibited throughout the skydiving community leads us to a very high level of mutual respect for our fellow jumpers. This precious commodity of solidarity is rare in this world, and we must allow that connection to lead us to always reach for safer procedures built on our ever-increasing understanding of that which saves our lives. Improvement in matters relating to safety is just love of life in motion, and love must be adaptable and smart if it is to last in a complex world. Again and again, skydivers prove to me that they are highly intelligent adventurers committed to safety, and very much worthy of my respect. We will adapt, and we will thrive. About the Author: Brian Germain is a parachute designer, author, teacher, radio personality, keynote speaker with over 15,000 jumps, and has been an active skydiver for 30 years. He is the creator of the famed instructional video "No Sweat: Parachute Packing Made Easy", as well as the critically acclaimed book The Parachute and its Pilot. You can get more of Brian’s teaching at Adventure Wisdom, Big Air Sportz, Transcending Fear, and on his vast YouTube Channel
  25. In any aviation activity proper flight planning is critical to safety, and skydiving is no exception. If you take the time beforehand to plan for various eventualities, you don't waste precious time making decisions when they arise. Preflight Familiarize yourself with aerial views of the DZ and surrounding area, if they are available. Note locations of obstacles and pick likely outs for bad spots in various directions. Check weather reports, if possible, and note forecast winds at altitude, cloud conditions and any approaching fronts. You are less likely to be blindsided by rapid changes in conditions when informed of their likelihood. Turn on your AAD, if so equipped. Make sure your hook knives are accessible. Find out who on the formation has audible or visible altimeters, AADs and RSLs; make sure they are all operational and properly initialized. Check your and your partners' gear. Make sure you are in agreement on breakoff and opening procedures and altitudes. Face into the wind and see where the sun is. Its position should be the same when you are on final and there is no wind indicator available. Exit Know what groups are around you, what they are doing and what delay is planned between groups (ask around before and after boarding). The Skydive Arizona policy of large to small slow-faller groups, followed by large to small fast-faller groups, followed by students, followed by tandems is the best all-around approach in the business. The more of a delay between groups you can arrange, the better. DO NOT assume that any reasonable delay is reason not to pay attention to other groups in the air - LOOK AROUND! Freefall Dock gently, from the level of the formation. DO NOT swoop into a formation, but make the final approach smooth and deliberate. DO NOT EVER get above or below a formation. Inadvertent deployment can become fatal fast if people are above each other. If low, stay near and to the side of the formation until breakoff. Do NOT begin tracking before breakoff altitude, and DO NOT do anything to increase vertical separation.. Track flat at a common level. DO NOT drop out of a formation vertically. If you have an inadvertent deployment when you are below the formation, the likelihood of someone getting killed is significant. The greatest likelihood of an inadvertent deployment is right after exposing the pilot chute pouch to direct air stream - like when dropping out of a formation in a stand-up. Track to a clear sector while watching the people on either side. While flat tracking, it is easy to split the difference between the people to either side by looking under your arms. Canopy Flight Open at an appropriate altitude. Between two and three thousand feet is reasonable for a high traffic event; any higher opening (for CRW or whatever) should be arranged with the pilot. Do NOT spiral down through a high traffic area. If spiraling to lose altitude, get well off the wind line to stay clear of the spot for other groups, and LOOK AROUND. In a turn, the direction of most likely collision is at the leading edge of the canopy in the direction of the turn, and there is a blind spot where a collision may occur between jumpers whose canopies blocked their view of each other until right before the collision. I reiterate - SPIRALING IN HIGH TRAFFIC IS DANGEROUS! The safest flight path when opening above the landing area is to fly the canopy away from the landing area, perpendicular to jumprun, until far enough out to allow a long, shallow approach to the landing area (leave enough room for obstacle clearance). LOOK AROUND NEAR THE GROUND! Don't fixate on your landing, but pay attention to who is in the area. Keep your head on a swivel, and periodically scan for potential traffic. Do not execute unplanned turns near the ground. If you are cut off on final, executing an avoidance turn must not be a possible response. Landing The safest landing areas are the least popular ones with the most outs. Landing in congested areas or where ground traffic is allowed (e.g., the camping area) can be an invitation to disaster. If you must turn for traffic or obstacle avoidance while setting up to land, use a FLAT TURN. If you don't know how to do so, find out from someone experienced in the maneuver and practice at altitude until you have the procedure wired. Keep your head on a swivel after touchdown. Even if you land under complete control, you might want to dodge someone who is swooping where they should not.If landing out is inevitable, or if safely making it to a designated landing area is in doubt: Pick an open area in which to land by 1,000 feet (300 metres). Corn can be over 12'(4m) tall (a cornfield is NOT like an unmown lawn), so landing between rows and preparing for a PLF will reduce the likelihood or extent of injury. Any changes of color on the ground probably have barbed wire along the boundary. Land parallel to any area changes. Locate any telephone poles or other wire supports by 500 feet (150 metres), and set up to avoid the wires that are sure to go between them. Identify the lay of the land by 500 feet (150 metres), and set up to land alongside any hills. Do NOT land uphill or downhill, REGARDLESS of what the wind is doing. If there is any doubt about the landing surface, or if you are sure to have excess speed on touchdown (like when stuck with a downwind landing) execute a PLF and roll out the landing. Keeping feet and knees together, and not using hands or elbows to break the fall can greatly help avoiding injury.