1 1

Safety

    Collapses and Turbulence

    There are many variables to consider when looking into a canopy collapse:
    What was the pilot doing?
    How fast was the canopy flying when it collapsed?
    Where was the pilot flying?
    What is the canopy design?
    What is the wing-loading?
    Was there any re-active solution employed? These are the principle considerations, but not the only ones. I will take each one separately.
    1) The way in which a parachute is flown can increase or decrease the "G" loading on the lines. A rapid release of one or both brakes significantly increases the chances that the canopy will collapse. This allows the parachute to surge forward to a lower angle of attack, decreasing the lift of the parachute. This reduces the amount of energy exerted by the parachute away from the suspended load, allowing the "negative" portion of the lift to take over and allow the wing to fly towards the jumper.
    2) Airspeed is what creates lift. Lift is what causes the wing to strive to fly up and away from the jumper. This is the formula for line tension and therefore stability. The slower you are flying, the more likely your parachute will collapse due to low internal pressure and low line tension.
    3) Was the wing flying in clean air when the collapse occurred? This is an important part of the question. All parachutes can collapse in "bad" air. We must always fly considering the invisible dangers that the sky presents us. If you wouldn't fly a kite there, don't fly or land your parachute there.
    4) Certain parachute designs do better in turbulence than others. I must avoid pointing fingers here, as this is a volatile industry that can be taken down by non-skydiving lawyers. Nevertheless, certain wings have an increased propensity to go "negative" when presented with adverse condition, while others bump around a bit and keep on flying. This is a complex issue, and the best way to decide which parachute to buy and fly is to listen to the actual statistics, and to your own experience when flying a particular design. I have not experienced any kind of collapse on the parachutes I fly, ever.* If you have on yours, you may want to reconsider what is over your head.
    *(This does not include nasty, ill-conceived prototypes that seemed like a good idea at the time. I am talking about production-model canopies here)
    5) Parachutes perform differently at different wing loadings. The lighter the wing loading, the slower it will fly. This means that the internal pressurization of the wing will be less on larger canopies. In general, lightly loaded parachutes experience more small collapses than heavily loaded ones. Not only is there less internal pressure in the wing, but the dynamic forces area also less with decreased airspeed. This means that the average line tension tends to be less on a lightly loaded wing, and the wing tends to have a increased propensity to surge forward in the window when flying at low air speeds. This is why very small, highly loaded parachutes tend to experience fewer distortions, especially when flown at high speed. Flying at high speed increases the drag of the canopy itself, relative to the jumper, so the relative wind holds the parachute back in the window and at a higher angle of attack. This is why I make carving, high "G", high speed turns to final approach heading, especially in turbulence. The speed actually reduced the chances of a collapse by increasing the forces that keep the parachute at the end of the lines. I am literally increasing my wing loading by flying fast and at high "G's", and the increases velocity reduces the amount of time that I fly in bad air. I am not saying that you should downsize just to increase your stability. I am saying that until your skills and knowledge are ready to fly smaller, faster parachutes, you should stay out of the sky until the winds come down. I still haven't been hurt by a jump I didn't do.
    6) This is all about "Pitch Control". If you are flying a good design with lots of airspeed and significant line tension, and in a reasonable location that has no obvious precursors for collapse, you can only deal with a collapse in a re-active manner, as you have addressed all of the relevant variables up to this point. If your wing tries to aggressively surge forward in the window, you must notice it and quickly stab the brakes to bring it to the back of the window. A collapse always begins by a surge to a low angle of attack, but there is very little time to deal with the problem before I folds under. Here are the signs:
    The first sign is a change in Pitch. The wing moves forward in the window. This is the limited flying space over your head. Too far forward and it collapses. Too far back and it stalls.
    The "G" loading drops dramatically and almost instantly. In other words, your apparent weight in the harness drops because the wing is producing less lift. This is the time to jerk on your brakes: quickly, sharply, but not more than about 50% of the total control stroke. This action is to pull the wing back in the window, not to stall the parachute. By putting the wing further back in the window, we are increasing the angle of attack. This increases the lift, and forces the wing to fly away from the suspended load and thereby increase the line tension. This can prevent a collapse entirely, or cause the wing to recover to stable flight before things get really out of control.
    If the wing is allowed to collapse, it may recover quickly on its own. This is why the more modern airfoils have the fat point (Center of Lift) so far forward. It causes the wing to pitch nose-up when it begins to fly again, bringing it back to the end of the lines. Nevertheless, parachutes can still collapse fully, which often involves significant loss of altitude and possibly a loss of heading. If your wing goes into a spin because of a collapse, your job is to stop the turn first, as you increase the angle of attack. If it is spinning, there is less chance of recovery until the flight path is coordinated and the heading stable.
    Conclusions:

    Don't fly an unstable parachute. If it is prone to collapse, ground the parachute. Do not sell it to an unsuspecting jumper at another drop zone. These people are your brothers and sisters.
    Don't fly in crappy air. Land in wide open spaces, in light winds, and never directly behind another canopy.
    Practice stabbing your brakes in response to forward surges on the pitch axis. This must become a "learned instinct" that requires no thought at all. Like pulling emergency handles, pulling the wing to the back of the window when the lines get slack is essential for safe skydiving.
    Keep flying the parachute. If your parachute does something funny near the ground, don't give up. If you keep your eyes on YOUR ORIGINAL HEADING, you will unconsciously do things that will aid your stability and keep you from getting hurt. Looking toward what you don't want is how you make it occur. I hope this little article helps you understand the phenomenon of collapses a bit better. I know as well as anyone how painful a collapse can be. I do not want to go back to that wheelchair, and I don't want anyone else to have to experience that either. You morons are my family, and if information can help protect you, I will give it until my lungs are out of air.
    Blue Skies, Sky People.

    Bri
    Article Discussion

    BIGAIR SPORTZ

    By BrianSGermain, in Safety,

    Clean Up Your Turns

    "Turn coordination" is a topic that, until recently, has been mostly unapplied to ram-air parachute aerodynamics. In simplest terms, this refers to the degree to which a flight vehicle is aligned to the relative wind during a turn. Another way to look at this is the degree to which a turning aircraft is pointed at the relative wind with regards to the yaw axis.
    A "clean turn", from an aerodynamic perspective, is one that keeps the nose of the aircraft pointed at the relative wind throughout the turn. When flying airplanes, this prevents the passengers from spilling their drinks, as well as saving fuel and preserving airspeed. In parachutes however, this aspect of turning has mostly been ignored. As parachutes become faster and faster, the time has come to begin thinking about this aspect of our canopy flight for several very important reasons.
    The first has to do with the ability of the pilot to level off at any point during the turn. Lets face it, sometimes the ground creeps up on us. Flying an aerodynamically sound turn increases the likelihood that you will be able to convert your airspeed into lift in a timely manner. If you are sliding sideways through the sky because you are simply jamming a toggle down, you are not prepared to interface with the planet. The relative wind is jumping across the bumps on your parachute, creating turbulent flow, while the suspension line load is getting shifted to one side of your canopy. When you attempt to stab out of an uncoordinated turn, there is a hesitation before the parachute begins to change direction and level off. If the ground gets to you before this happens you may find yourself watching Oprah in your hospital bed for a while (not that I have anything against Oprah).
    The second reason for flying a coordinated turn has to do with overall parachute stability. In an uncoordinated turn, the nose of your parachute is not pointed at the oncoming relative wind. It is sliding sideways. This means that the pressure in your wing is being compromised, in addition to the wingtip on the outside of the turn being presented to the relative wind. If you hit turbulence during this kind of "sloppy" turn, you are much more likely to experience a collapse of this side of the parachute. In other words, if you are turning right, your left wing more likely to fold under. Interestingly, when an aggressive, uncoordinated toggle turn is released, the opposite tends to happen. When the right toggle is released, the right wing surges forward as the drag is released and it is presented to the relative wind, opening the door for a collapse on right side of the parachute. Either way, this can result in way too much daytime TV.
    A fundamental problem...
    There is a fundamental problem with the way in which most of us were taught how to turn our parachutes. They said: "if you want to turn right, pull down the right toggle." Simply pulling on a toggle increases the drag on the right side of the parachute, retreating that wing tip. At the beginning of the turn, it is purely "yaw" energy. It is like the pilot of an airplane stepping on the rudder pedal. As a discrete action, steering toggles are an incomplete input. We need some "roll" energy.
    The harness is more than a way to attach the jumper to the parachute. It is also a way to manipulate the canopy itself. If the right leg reaches for the earth as the left hip reaches for the sky, the parachute will turn to the right. It is true that smaller parachutes will respond quicker to such inputs than larger ones, with elliptical canopies responding the quickest, but harness input will have an affect all parachutes. Most importantly, when used at the initiation of a turn, harness steering converts a toggle turn into a coordinated maneuver. This is true if you are under a Lotus 190 or a Samurai 95.
    When flying an airplane, all turns begin by initiating roll energy with the ailerons, (rotating the yolk), followed by an application of the rudder to coordinate the turn. The old airplanes had a string on the cowling (hood) to show the direction of the wind-flow, while newer ones have slip indicators on the instrument panel. If only we had such information while we were flying our canopies. Ah, but we do…
    Trailing behind your wing is all the yaw axis coordination data you will ever need. It is called your pilot-chute. If you are flying a coordinated turn, your bridle will remain parallel to the ribs of your canopy throughout the turn. If at any point it goes slack, whips around like a snake or drifts off to one side, you are not flying a clean turn. You are not carving your wing through the sky; you are skidding out of control. The relative wind is not following the valleys of your ribs; it is hopping over the bumps, tumbling into chaos.
    Try this on your next jump. Look up at your canopy while you are flying straight and simply yank a steering toggle down to the ½ brake position. You will immediately see what I am talking about as your pilot-chute swings off to one side. Next, lean in your harness, lifting one leg-strap to yield direct roll axis input. It may turn and it may not, depending on the wing. This is not important. Then, while holding the harness input, pull the steering toggle to turn toward the direction of your harness input. You will notice that the pilot-chute is trailing straight back, even in a sharp turn.
    Once you have experienced your first real coordinated parachute turn, it is time to develop new habits. This takes time. I find that when learning a new skill like this, it is best to have a simple way to remember the process. In this case, try using the following sequence for every turn you make: 1) LOOK, 2) LEAN and 3) TURN. This is mnemonic was taught to me by a great paragliding instructor and skydiver, J.C. Brown. Rather than thoughtlessly jamming a toggle down, look where you are about to go, lean in the harness to establish the roll, and finally, pull the toggle down to flow deeper into the maneuver.
    When you play with this kind of turn, you will find that the parachute simply feels better; that you feel more in control over the wing. You will also find that you can better bump both brakes down during the turn in order to reduce your decent rate, or even level off completely. While practice is necessary to perfect the technique, all parachute have the ability to transition from a descending turn into a level flight turn, into a soft beautiful landing. If you know how to carve your way out of a low turn, there will never be a reason to hook into the ground, ever.
    Although many skydivers still think of their parachute simply as a means to get back down to the ground after a skydive, learning how to use the system the way it was meant to be used will increase the chances that you will get back down to the ground safely. Gravity pulls equally on those who love canopy flight as those who abhor it. From twenty years of teaching parachute flight I have learned this: you can only become great at something that you love. The more you understand, the more you will explore. The more you explore, the more you will feel control. The more in control you feel, the more you will love it. And that, ladies and gentlemen, is what it is all about.
    BSG
    Brian Germain is a parachute designer, test pilot, advanced canopy flight instructor and author. Brian's book The Parachute and its Pilot has become the worldwide source for canopy flight information and is available at a gear store near you, or through Brian's website: www.BigAirSportZ.com

    By admin, in Safety,

    Chopping Is Just The Beginning

    A reserve ride is an exciting adventure no matter how many jumps you have under your belt. Preparatory training is obviously the best way to ensure that you walk away unscathed, but it is my experience that the simulations we create are not as realistic as they could be. In many cases, many of us will argue, they are not as good as they need to be.
    The purpose of this article is to suggest possible improvements to the state of the art in emergency procedure training. If we envision beyond what we have done in the past, improvement is assured, and the safe conclusion of parachute malfunctions will increase in frequency. If we can simulate cutaway jumps more realistically, skydivers will be calmer in emergency situations, and more skillful. Elaborate simulation, in my experience, will also result in greater awareness and recall, more efficient actions, and less emotional trauma once the event is over.
    The first issue to be addressed by our sport as a whole is our simulation equipment. Although a vest with handles may be very helpful for establishing the general flow of handle-pulling, it is a far cry from what the event will actually feel like. Many jumpers have reported, upon landing from their first cutaway, that things did not feel or look remotely the way they expected. Handles were not where the jumper expected them to be, pull forces were not what they anticipated, nor was the feeling of the experience similar to the training process that was supposed to prepare them for this event. It is my experience, however, that when we take thoughtful steps to improve our training methods and equipment, the gap between expectation and reality can be closed significantly.
    The most important piece of equipment in any simulation is the mind. Creating a clear visualization of the scenario is essential, no matter how silly it may look to bystanders. The job of the Instructor in these situations is to provide insightful clarification, ideally based on their own experience. Set the emotional stage for the student in every possible way, describing the details as clearly as possible, leaving nothing out. Allow yourself to get wrapped up in the excitement that is inevitable in such experiences. This will not only make the simulation feel more real, it will help illuminate the natural mental reaction of the student to intense stress. If over-reaction or under-reaction is apparent, further training is necessary. If the student failed to perform, the instructor simply has more work to do.

    It continues to be my strong opinion that a suspended harness is absolutely essential for the best possible training. Given the vast amount of money we now spend on aircraft and student gear, skimping on this key element of teaching equipment is shortsighted, and most often a product of laziness and compromise. If building a hanging harness cost thousands of dollars, the financial argument might hold more merit, but this is most decidedly not the case. There are many possible methods that cost very little, and can be created in just an hour or two. I know, I build a new hanging harness at almost every dropzone I travel to in the process of running my canopy skills and safety courses. I do this because I want to offer my course participants the best possible training, and because an alarming percentage of skydiving schools have done away with this vital piece of training equipment. This needs to change if we are to improve the safety of our sport.
    Let's start with the actual harness. When I find suspended harnesses in use, most often the actual rig is an uncomfortable, dilapidated old rig from the early 1980's, hung from the ceiling by attachment points that are way too close together to simulate a realistic experience. In the best cases, there is a three-ring setup that allows the jumper to cut away and drop a few inches. This is a great training aid, but what if the rig was a more modern adjustable harness that could accurately reflect the fit and handle placement of the rig they will actually be jumping? For that matter, what if we hung them in the rig they were actually going to jump? What if the suspension apparatus was long enough to practice kicking out of line-twists? What if the toggles simulated the resistance of an actual parachute using bungees or weights? What if you pulled on straps attached to the bottom of the harness each time they flared, to simulate the pitch change? What if, as crazy as it sounds, you went to the local hardware store and picked up a high-powered carpet blower, a.k.a. “snail fan”, and angled it up at the harness to reflect the feeling of the relative wind? This is the kind of outside-the-box thinking that creates better simulations, and better training. Further, this is how we prepare our students for an actual malfunction and reduce the risk of pilot error.

    For experienced jumpers, I highly recommend hanging up in your own rig. This will clarify handle placement under load, allow you to explore strap tightness possibilities, and give you the opportunity to experience actual pull forces when your repack cycle is up. If you do not have stainless steel hardware on your rings, please use fabric connection points rather than the carabiner attachment displayed in these photos.
    Another key element of malfunction simulation is to follow through with the complete jump, rather than stopping after the handles are pulled. In reality, the adequate performance of emergency procedures is just the first in a long list of steps that lead to a safe landing. For instance, what if the cutaway harness had Velcro reserve toggles that needed to be first peeled upward and then pulled downward? Many people, myself included, have tried simply pulling the reserve toggles downward to find that they would not release. Missing details like this can lead to a student feeling more angst than is necessary, and can result in further stress-induced mistakes with major consequences. Additionally, proper exploration of the reserve canopy is important for a good flight pattern, accuracy and landing flare following a malfunction. How much slack is in the brake lines? Where is the stall point? What is the flare response on this brand new canopy? A good cutaway followed by a broken ankle on landing is still a bad day. Simulate the whole jump, and there will be fewer surprises.

    The final issue I want to cover on the topic of better emergency procedures training is the inclusion of deliberate adrenaline management efforts following the deployment of the reserve canopy. Carrying the emotional momentum of a malfunction all the way to the ground definitely increases the chances of a lousy landing. High levels of stress takes time to sluff-off, but a skilled operator also knows how and when to slow down. Once you have pulled all the handles you need to pull, taking three long, slow, deep breaths while gazing at the horizon with a smile of relief on your face can change your mood, and your fate. Get your composure back, and your optimism will follow. From there, skill is just a short step away. This process can and should be included in every emergency procedure simulation to create a habit that is likely to be carried out in the sky. Following such quiescent procedures allows the mind to more easily let go of the recent past and focus on the present moment and the near future:
    1) Check altitude and location

    2) Find a safe landing area

    3) Explore the reserve

    4) Fly a good pattern

    5) Flare beautifully

    6) Walk away with a smile on your face

    7) Thank your rigger
    A malfunction does not need to be viewed as an emergency, especially if you are truly prepared; it is just a change of plans. A complete simulation can be the difference between a horrifying emergency and a well-executed contingency plan. If we handle it well, a main parachute malfunction can actually be fun. I have found few experiences more rewarding than a complicated situation that I figured out on the fly, and despite my fear, I kept my head and did the right thing. In short, a parachute malfunction is an opportunity to prove to yourself and the world that you can handle yourself in a crisis, and with realistic training, your success can be an inevitable conclusion.
    About the Author: Brian Germain is a parachute designer, author, teacher, radio personality, keynote speaker with over 15,000 jumps, and has been an active skydiver for 30 years. He is the creator of the famed instructional video "No Sweat: Parachute Packing Made Easy", as well as the critically acclaimed book The Parachute and its Pilot. You can get more of Brian’s teaching at Adventure Wisdom, Big Air Sportz, Transcending Fear, and on his vast YouTube Channel

    By BrianSGermain, in Safety,

    Choosing Emergency Contacts

    One of the things that all most every Dropzone or Boogie waiver has is a space to list an Emergency contact. Most jumpers just fill this information in with the first relative or friends name that pops into their head as they fill out the waiver, but jumpers should fill this section out after carefully selecting a contact. Jumpers should put more thought into this decision then they do into what type of jumpsuit they are going to buy.
    There are criteria that make people better emergency contacts then others and jumpers should keep this in mind as they make their selection. Potential emergency contacts should meet the following criteria at a minimum:
    Potential emergency contacts need to be aware of any medical issues or conflicts that you might have. If someone is allergic to something and forgets to put it on their waiver the emergency contact might just be the last line of defense there is to prevent the emergency responders from giving them a potentially dangerous drug or drug combinations.

    Emergency contacts should have phone numbers to your immediate family members rapidly available so they may inform your loved ones about any potential incidents that might have happened. Poor choices for emergency contacts include people that have never met you or your family before you visit the DZ. At a minimum your emergency contact should have the phone number to contact the person that you would want to be notified of your injury or death first.

    Another trait that makes a good emergency contact is choosing someone that is not at the airport the same time you are. In the case of something like a plane crash or canopy entanglement you might be involved in the incident with potential emergency contacts. By choosing someone that is not involved in skydiving or at the airport at all you maximize the availability of contacts that DZ personal might be able to reach in the case of an emergency on the dropzone.

    Contacts should be someone that will be able to initially handle receiving potentially devastating news about you. Choosing someone that is known to be extremely emotional over the phone might be a poor choice as a contact if the Dropzone or medical teams need to ask questions of the emergency contact. Choose someone that will be able to calmly answer any potential questions after being informed that you are injured or worse.

    Having multiple methods of contacting emergency contacts makes the task of reaching the emergency contact a lot easier for the dropzone personal. Emergency contacts should have at least one phone number and if possible multiple phones. List every phone number in the order that they should be called. Listing mobile numbers, home numbers and work numbers should all be done at a minimum to insure the maximum possibility of reaching someone in a true emergency.
    Other things that should be used as criteria in potential emergency contacts include knowing who might be on vacation and out of reach at the time of certain boogies, knowing which contacts will be available to rapidly travel to deal with incidents if they happen, and in the case of international jumpers knowing the time difference and how that is going to affect the ability to contact your potential contact.
    Using these criteria to choose an emergency contact will increase the probability that the dropzone personal will be able to reach and inform people of emergencies involving you, plus it will reduce the anxiety factor on the dropzone staff side in contacting people if they know they will not have to end up calling 10 people to reach someone that has needed answers about you.

    By admin, in Safety,

    Choices, Choices: Pilot-Chute-In-Tow Malfunctions and You

    Curt Vogelsang captures some hot canopy-on-canopy action. Y’know when you don't feel like getting out of bed in the morning? Your main parachute is likely a lot brighter-eyed and bushier-tailed than you are, but every once in a good long while it just doesn't feel like getting out and doing its job. Y’know? Relatable.
    Kidding aside: When you throw your hand-deployed pilot chute but the container stays closed -- trapping the main deployment bag inside, helpless to deliver you a parachute -- you’ve gotchaself a pilot-chute-in-tow. In other words: you’ve got nothing out, which makes you the clenchy, concerned (and hopefully very temporary) owner of a high-speed mal.
    You’d better get on that, buddy. Stat.
    But how?
    Deploy the reserve immediately or cut away first and then deploy the reserve?
    One Handle or Two Handles: The Cagematch
    If you’re not sure which you’d choose,* you’re certainly not the first. This particular point has been the subject of roaring contention since the invention of the BOC, my friends. (Guaranteed: the comments section below will corroborate my statement. I can sense people sharpening their claymores and dunking their arrows in poison even now.)
    There’s a school that says -- well, duh -- get your damn reserve out, like right now what are you waiting for. There’s another school that calls that school a bunch of mouth-breathing pasteeaters. The latter group insists that you'd better go through the procedures you know lest you mess it up when it counts. They usually follow up by spitting on a photograph of the first group’s mother and wondering aloud why the first group is even allowed to skydive. Then they start punching each other.




    Images by Joe Nesbitt The USPA Skydiver’s Information Manual doesn’t make a move to break up the fight. It stands clear of the flying arms and legs and says, “Y’know -- they both kinda have a point.” Section 5-1 of the manual says this, verbatim:
    “Procedure 1: Pull the reserve immediately. A pilot-chute-in-tow malfunction is associated with a high descent rate and requires immediate action. The chance of a main-reserve entanglement is slim, and valuable time and altitude could be lost by initiating a cutaway prior to deploying the reserve. Be prepared to cut away.
    “Procedure 2: Cut away, then immediately deploy the reserve. Because there is a chance the main could deploy during or as a result of reserve activation, a cutaway might be the best response in some situations.”
    Let’s look a little closer at the options, then, shall we?
    Option One: Not Even Gonna Bother With That Cutaway Handle.

    Pro: Immediately yanking out that reserve saves a step. When AGL counts (and golly, doesn’t it?), saving a step can save a life. Many skydivers are quick to point out specific incidents in which jumpers with PCiTs have gone in with sealed magical backpacks, having failed to pull both handles (or pull any handle at all) while the clock was ticking. Gulp.
    Con: It takes the pressure off (in a potentially bad way). As the reserve leaves the container, there’s a chance that it can take the sealing pressure off the flaps that are keeping the main container closed. The main can then leap to freedom and deploy at the same time as the reserve. At this point, you might wind up with an entanglement, a side-by-side, biplane or downplane to figure out.**
    Option Two: Get Off The Field, Main Parachute. Reserve, You’re In!

    Pro: It’s the same stuff you’ve been taught to do for every other reserve-requisite malfunction. ...If you initiate the reserve deployment clearly, confidently, and as early as possible, of course. After all: making a one-off exception for a single kind of malfunction can be tricky. A jumper might well spend a little too much time thinking it over (‘Am I going for my reserve handle first right now? ‘Cause that’s weird. Is that okay?’) when they should just be yanking the stuffing out of their emergency handles. Going through the real-life motions of the little dance you do before you get on every load makes more sense to your body, for sure.
    Con: You’re adding more complexity to the situation than you may realize. Especially if you don’t have secure riser covers, the (jealous?) cut-away main risers might sneak out of the container and grab for the reserve as it deploys. Another thing: the main is very likely to wiggle free, detach from the harness as soon as it catches air and do its best to entangle with your Option B. The latter kerfuffle is made much more likely when you add a single-sided reserve static line to the mix, turning the already-dismaying situation into something of a tug-of-war. Neither of these choices sounds like the cherry on top of a lovely afternoon; I know. At some point, however, you may be forced to make one. If you do, you’d better have a plan in mind.
    Not in the mood to make that choice? Me neither. Luckily, there are some steps you can take to better your chances of never seeing a PCiT -- and in next week’s article, I’ll tell you what they are.
    ---------
    *If you have a Racer (or any container with a cross-connected RSL), you do not have a choice. You must pull the reserve without cutting away. Do not pass ‘go,’ do not collect $200. In that particular configuration, the main will choke off the reserve if the cutaway has been pulled. If this unnerves you, get thee to a rigger to discuss it.
    **Head over the PIA.com to check out a handy study they did in 1997 regarding the management of two-out situations. It’s called the “Dual Square Report.”

    By nettenette, in Safety,

    Canopy Skills Drills

    Learning to fly our parachutes is absolutely necessary for long-term survival in this sport. The philosophy that the canopy is simply a means to get down from a skydive is gradually becoming a thing of the past. This may be as a result of individuals with such an attitude dropping out of the sport due to canopy-related injuries, or from the insurmountable fear that comes as a result of a lack of control over their experience. Regardless, many jumpers have been taking an increased interest in flying their parachutes better.
    Reading and talking about canopies is the beginning of this process. We must understand the principles that allow our canopies to fly. To make a real difference in our capabilities, however, we need to physically experiment with our parachutes in flight. We must practice in the real world.
    Here are a few exercises that will increase your abilities to save your own life, and enhance your feeling of control while under canopy:
    Pitch Control Exercises

    Manipulate the canopy on the pitch axis using the brakes.
    Look at canopy to notice the amount of pitch axis change.
    Notice the difference between "soft" and "sharp" inputs: slow application vs. quick. Why?
    Controlling the pitch angle is how we manipulate the angle of attack of the wing. Without a dynamic change to the angle of attack, we will be unable to increase the lift of the parachute enough to change the direction of flight from its normal full flight glide to level flight. This maneuver is essential for safe landings.
    Pitch Control With Bank Angle

    Begin a turn using a single steering toggle.
    Apply the opposite toggle while still in the turn.
    Experiment with soft versus sharp inputs to negate decent.
    Look at canopy to notice pitch changes. Why?
    Having the ability to control the pitch axis while in a bank is what gives the pilot the ability to control the decent rate while in a turn. The natural tendency is to loose altitude in a turn, but this is not necessarily the result of turning with bank angle. By increasing the angle of attack while in a bank, we can increase the amount of lift that the parachute is producing, and even alter the flight path to level flight despite significant bank angle.
    Dive Arrest: Toggle Turns

    Place the canopy in a spiral dive using a single steering toggle.
    Arrest the dive as quickly as possible by sharply applying the opposite toggle as well as the inside toggle; the inside toggle is not applied until the two are matched in the degree of input. When the toggles are matched, a short stab of collective brake pressure is usually all that is needed to achieve level flight.
    Exercise both banked recovery and wings level recovery. Why?
    Turning too low is the preliminary cause of many injuries in our sport. Unfortunately, most canopy pilots assume that bank angle must be eradicated before arresting the dive. This leads many to waste valuable altitude in the process of leveling the wing. In situations with very little altitude remaining, this may delay the collective brake application until it is too late. By rehearsing a transition to zero decent while still in a bank, the pilot becomes accustomed to applying the toggle on the outside of the turn as a learned instinct, reducing the chances of a turn leading to serious injury.
    Dive Arrest: Front Riser Dive

    Place the canopy in a dive using the front risers.
    Rehearse dropping the front risers and quickly stabbing the brakes.
    Rehearse both straight front riser dive recovery as well as turning dives. Why?
    While acceleration on final approach can be great fun and usually leads to longer swoops, the acquisition of speed is not really the hard part. What keeps us alive is the judgment and skills necessary to save us when we dive the canopy too close to the ground. If we rehearse the solutions to the dangers, the likelihood of a dive resulting in serious injury is reduced. Letting the front risers up slowly may be the best way to get a long swoop when the dive is rounded up slowly and with ample altitude. Unfortunately, this muscle memory may not serve us when we are really low. In the time it takes to smoothly let up on the front risers we may find ourselves planted in the ground like a shrubbery. Dropping the front risers allows the pilot to keep their hands down, ready to stab the brakes aggressively to arrest a mortal dive. A short, sharp, shock on the brakes may be all that is necessary to place the jumper back under the wing, and to the higher angle of attack that saves their life.
    Slow-Flight Practice

    Place the canopy in 90% brakes and hold for 60-90 seconds.
    Make controlled heading changes of 45-90 degrees.
    Notice the difference in responsiveness as compared to full flight turns.
    Notice that lifting a toggle on the outside of the turn reduces the risk of stalling the wing on the inside of the turn. Why?
    Most pilots spend the majority of their canopy ride in full flight. This means that the feeling of the canopy in this mode is most comfortable to most people. It also means that flying in deep brakes places many out of their comfort zone. This means that most people are feeling somewhat uncomfortable just prior to putting their feet on the ground every single jump. In fact, this anxiety often causes people to hold their breath, and then offset their steering toggles toward the end of the landing in order to get to the ground sooner. They simply want this part to be over. In order to land with great consistency, we must become intimately aware of the flight performance of our parachutes in very deep brakes. The more time we spend in this flight mode, the more comfortable we will be. If we are to land well, we must be as comfortable with deep brakes as we are with full flight.
    Brian Germain is the author of The Parachute and its Pilot, a canopy flight educational text. Brian is also the President of Big Air Sportz parachute manufacturing company, and teaches canopy flight courses all over the world. To learn more about parachutes, or to order the book, go to: www.BrianGermain.com .

    By BrianSGermain, in Safety,

    Canopy Formation Part II

    CANOPY FORMATION PARACHUTING
    - CF (Part 2)
    Part 1
    may be read here
    Packing the Canopy

    You will want to pack your canopy for a CF jump in a way
    which will ensure that:
    it opens fast and reliably
    it opens on heading
    all canopies involved open with identical timing A good way to achieve this is to pack the main similar to a reserve canopy, as the requirements for a reserve opening are about the same.
    Indeed, many CF teams do so. Since there are different methods of reserve packing, it is recommended that all jumpers involved in a team or group should use the same packing method for safety reasons. Doing so reduces the probability
    of collisions and unintended different opening levels to make sure that each team member has an optimal set up for his way to the formation.

    Type of Exit and Exit Order
    A good exit speed is 70 to 80 knots with little prop blast.
    Newcomers to CF will enjoy greater success if the jumpers exit one after another
    in the same way students perform “hop and pops” and remain stable. It is
    essential to remain in a symmetrical body position until the canopy is
    completely inflated to assure that the canopy opens on heading and continues
    flying straight until you want to fly your pattern towards the docking position.
    With experience comes a tighter exit timing, and this practice becomes even more
    important.
    If your canopy does not open on heading you can easily end
    up in a dangerous collision or at least in a bad position during the approach to
    the formation. Also, other jumpers can be disturbed as they try to avoid the
    errant canopy.
    In general you will exit in the order of your position in
    the formation. Competition teams might use different techniques to speed up the
    build of their first formation.
    Timing
    Teams with more experience will eventually develop an exit
    with two or three jumpers standing in the door, jumping with only very little
    delay, and pulling in sequence to create a perfect set up for the build of their
    first point. In this type of exit, the last jumper leaving the plane (front
    person in the door) deploys first. The next jumper deploys when he can see the
    beginning deployment of the jumper above. This leads to a set up with the lower
    canopy slightly in front, which creates a perfect set up for a final approach.
    Set-Up for Building the Formation
    In most cases it makes sense if the person flying the Base
    sets up on heading, flying with a little brakes and slightly lower than the
    jumpers that will dock next. That gives the next jumpers the potential to fly to
    their docking position because altitude is our fuel.
    A good position for the final approach of a single canopy
    is slightly higher and to the side (perhaps slightly behind) of the canopy to
    dock, onflying parallel with it.
    The optimum setup of course depends on the flight
    characteristics of the formation to dock on.
    For docking on a fast sinking formation, it’s probable that
    the setup will be lower than for docking on a floaty formation. The necessary
    experience to estimate the perfect set up will only come with the jumper and
    quality of your jumps
    Body Position

    Fig2.1
    To keep your canopy flying straight with even controls, body position must be symmetrical. Shoulders should be square and arms in a “box position” with legs slightly spread and bent as shown in the sketch of a stack. If you lift one leg from that position while stretching the other one your canopy will start to turn towards the stretched leg. If done with intention, this can be a useful tool. For example, a stair step formation might benefit from stretched-leg control. Bent legs also provide the potential to compensate for tension in a formation and to dampen oscillations.

    Reducing Altitude
    When getting into the setup position for your final
    approach to the formation you may find yourself higher than desired (if your are
    too low or far behind you won’t be able to get into the formation).
    There are different ways to lose extra altitude without
    using much space. It always makes sense to stay in a small area because long
    distance movements take much more time. Additionally you may interfere with the
    waiting position of another jumper.
    Furthermore, you might have difficulties estimating your
    exact position. Below, you’ll find methods of losing altitude.
    Cross Controls
    If it is important to use very little space, you can easily
    lose altitude by using cross controls. That means you’ll pull down one front
    riser, then compensate the move your canopy would now make by applying the
    toggle on the opposite side. Because the canopy is being distorted it sinks and
    will pick up speed to the distorted side. The toggle action evens out this
    momentum so that the canopy ends up sinking in place, assuming that the right
    balance is applied. Doing so you can get into the desired set up position for
    your final approach without disturbing another jumper in his set up position
    close to the formation.
    Rear Riser Stall
    A similar result can be achieved by performing a rear riser
    stall. To do so, you grab the connector links on your rear risers and pull them
    down carefully. This is not very hard to do. Because the main part of the lift
    is being created in the first third of the profile where the A- and B-lines are
    attached to the front risers, this is a fairly light pull..
    At first, the canopy will begin glide flatter without losing much speed. This range can be useful if you find yourself far away from the drop zone on a down wind flight pattern and want to get as close to the DZ as possible. If l the risers are pulled down a little further, the canopy will smoothly begin to stall and sink very fast. This technique can help to lose a
    lot of altitude. However, it should be practiced with only two jumpers involved before being used in a big way jump. It is not recommended in a tight echelon as the canopy may come out of the stall bailing out to the side, and interfering with others in the lineup.
    Rear Riser
    If you are too low and need to gain altitude on the way to
    your waiting position, or if you’ve gotten behind the formation, you can use
    very light pressure on both rear risers to fly a fatter path without
    losing much forward speed. This has to be done very carefully because it you
    pull them down too much you will lose speed and only millimeters further, end up
    in the rear riser stall previously mentioned.
    About the oldest technique to lose altitude is the “sashay.” The sashay begins with a radical toggle turn away from the formation and then a reverse movement as soon as the canopy has tilted to the side; this movement is stopped out with both toggles. It is not very efficient, utilizing a lot of area and you may lose track of your position relative to the formation. It takes a lot of practice to get good results with this radical maneuver.
    Over the Top
    Also from rotations comes the “rotation over the top“. The move begins with going to deep brakes quickly. As soon as the canopy rocks back grab both front risers and quickly pull them down without letting go of your toggles. It takes less force than you might expect because if done at the right moment, the front riser pull will coincide with the canopy having almost no lift and no tension on the lines. Next, you riser down little further than your final
    destination, release the risers, and swoop into your docking position by using
    the toggles.
    Today some successful teams are using a combination of the
    two techniques mentioned above. However, these should be considered advanced
    skills, to be discussed in another article.
    Techniques for Approaches
    The most challenging part of a CF jump is the build of the
    initial two-way formation or the dock on a single canopy. Remember, a formation
    will usually not perform as well as a single parachute. Docking on a larger
    formation always gives you a little extra performance relative to the formation
    since you have a single canopy with all of its lift potential. Good technique(s)
    is/are required to dock with a single parachute of similar performance.
    That means you’ll need to gain some momentum when
    attempting to dock on a canopy flying by itself. The only way to do so is by
    setting up higher and not too far behind the canopy you’ll be docking with.
    The canopy to be docked upon should slightly hold  brakes
    to make things easier.
    The docking jumper begins his approach setting from a
    position with his feet approximately at the level of the canopy he’s docking on;
    slightly behind or a little to the side. The approach is initiated by using
    front risers to pick up speed and controlling the direction of flight. Now pilot
    the canopy to a position slightly lower and slightly behind the final docking
    point. The final move is performed via toggles (reducing speed), swooping up to
    the desired level, and aiming the docking cell to the desired position (center
    cell for a stack or end cell for a stair step). It is essential not to have too
    much energy left when docking and also not to end up too low. If you end up too
    low the dock will fail. If you find yourself having too much left-over energy,
    you should abort the dock for safety reasons and use the potential energy to fly
    to a good position for a new setup and another attempt.
    Building the Formations
    In principle, there are only two or three ways of making
    approaches.
    Building a Stack
    To build a stack, the jumper who is docking sets up
    slightly behind and above the canopy he’s docking on while the jumper to be
    docked upon flies straight holding a little brakes. The lower canopy stays in
    brakes until the docking center cell has touched his back. If the dock is
    perfect and he has some experience, he can take foot grips hooking his feet
    behind the center lines. If not, he can release his toggles and grab the docking
    canopies nose get it into the right position and then take the foot
    grips. Having done so, the lower canopy pilot gets back on the toggles to
    control the formation. Never release the toggles before the docking canopy has
    actually touched you because if you do, your own canopy picks up speed and flies
    away from the canopy trying to dock.
    In any case it is important that he releases both toggles
    evenly to prevent the formation from spiraling.
    It is also very important that the docking pilot can see at
    least the lower legs of the jumper he’s docking on. Should the legs become
    shorter and shorter you need to add more brakes. It an absolute NO to pass under
    a jumper you intended to dock on. If you have the impression that this is about
    to happen you must abort the attempted approach by either stalling radically or
    turn away with one front riser pulled down. It can be extremely dangerous to fly
    underneath and in front of a formation because your burbles can cause canopies
    in the formation to collapse. Also you could lift up with the middle of your
    canopy under the jumper you wanted to dock on ending up in a wrap. That means if
    you perform any kind of dock on a formation you have to be in full control of
    your canopy at all times and able to abort if not. Otherwise you are not
    qualified to do CF jumps.
    Fig
    2.2
    If
    the docking canopy ends up higher than wanted, it’s not necessarily a
    problem. The docking jumper can park his canopy with his nose in the center
    against the lines of the top canopy and slide it down by moderately using his front
    risers until the top jumper is able to reach for his grips.
    Approaches to lower positions in a stack or plane will need a lower set up
    than for high positions because the formation begins to sink more with its
    size - especially the “plane” formation.
    Speed teams may still want to dock positions three and four from a higher
    position and perform a riser dock by aiming their slider to the jumpers feet instead of the center cell.

    Building a Plane
    A plane formation begins with a stack. Next, the top jumper
    climbs down the center A-lines and once the slider has been reached, he now
    hooks his feet behind the front risers of the lower jumper. The lower jumper
    helps by putting on some brakes to increase the lift of his canopy. If the top
    jumper needs to pull himself down on the A-lines, it must be done with
    uniformity to prevent the formation from oscillating sideways.
    Building a Stairstep
    The Stairstep is the second basic type of formation. The technique for building a stairstep dock is similar to the techniques explained previously but because the Stairstep is far less solid than a stack or plane, everything has to be done with lighter input and greater precision.
    The set up for the final approach is slightly to the side
    of the formation. To make a clean straight and precise dock you’ll want to keep
    it relatively short with not too much potential. You may start with one canopy
    width to the side of your target canopy and your canopy slightly lower than the
    canopy to dock. The approach should be from the side rather than from behind so
    that the jumper to be docked upon has a good view of the line he wants to catch
    as well as remaining in the clean air to the side of the docking canopy. Also in
    this type of dock you should never get too low or lose sight of the target. The
    docking end cell should end up at the hip to the shoulder of the docked body.
    The docked jumper can now hook his outside foot behind the outside A-line of the
    docking canopy with his body staying outside the docking cell. If the grip taker
    should need to use a hand grip to guide the docking canopy to a good position
    for taking ther foot grip he has to be well aware to maintain his body position
    in the harness to prevent unwanted influence on the flight of his own canopy.
    The docking pilot puts on some outside front riser trim as soon as the top
    jumper has taken his grip to prevent his canopy from coming up on the opposite
    side. After having set his canopy by doing so he may release some of that trim
    or maybe even all of it. Sometimes it gives you enough trim to stretch the
    outside leg to keep the bottom canopy flying nicely. Sometimes no further trim
    is needed any more but still you should keep your hand on the outside front
    riser ready to apply trim again if needed.
    The set up for stairstep docks in lower positions may be
    somewhat lower. None-the-less be aware that a stairstep formation flies fast and
    flat compared to other formation types. If your setup is too low your docking
    time may become very long.
    The build of the stairstep, stack, or plane can of course
    also be done in reverse order with the lower canopy flying in little brakes and
    being the target and the top canopy flying  the approach. The technique is
    referred to as the Top-Dock and will be explained with techniques of
    sequential CF later on.
    Flying in the Formation
    As in free fall skydiving you have to keep on flying after
    you docked. In a stack for instance, especially in the bottom position, you need
    to make sure that your canopy does not get too light and floats up. All canopies
    should have slight tension on the center A-line to make the formation healthy.
    In a plane it is important that all cells of all canopies
    are inflated. If not the jumper in question can reinflate his closed cells by
    putting on some brakes. Perhaps he will also have to maintain some toggle trim
    to keep his canopy’s nose open. Also a jumper next to a closed cell can help by
    pulling the nose open.
    Good awareness is needed in formations with stairstep grips
    like stairsteps, diamonds or boxes. Especially jumpers in lower positions need
    to always keep their canopies from coming up or around. Possible techniques are:
    outside front riser trim asymmetrical leg position and inside toggle.
    Signals within the Formation
    To signal information to other jumpers in the formation
    there are two ways. You can either shout a command by addressing the jumper with
    his name or use certain signs. In bigger formations it is more convenient in
    most cases to use signals instead of vocal communication to avoid noise and
    confusion. The signs and commands to use must be known well to everybody. In
    case of vocal information you must never use negative commands. If for instance
    you shout “don’t cut away!” and the other jumper misunderstands he will cut
    away. In this case you should have said “hold on!” for example.
    In large formations there are two very useful signals to
    the jumper below you: Twisting your foot sideways means the jumper whose canopy
    is on that foot needs to get lighter for example by putting on some brakes or
    easing the front riser pressure if possible.
    Shaking the foot vertically means get heavy which means put
    on some front riser pressure or signal further down if the jumper(s) below is
    (are) light on you as well.
    Piloting a Formation
    Stack and plane formations always follow the top canopy and
    are controlled by the top jumper also called the pilot. The stair step needs
    more caution than the stack because it is connected less stable. Diamond
    formations act similar but in bigger formations the pilot might need some
    assistance by all the out side wing people to help keep the formation flying
    straight or to help turn the formation. Bigger diamonds are fairly inert. It
    takes some time to make a big diamond turn.
    The most attention is needed in stair steps. In a turning
    stair step the bottom jumper always needs to compensate the change in the flight
    characteristic of the turning stair step versus the straight flying one. If the
    formation is turning away from him he needs to release some of his outside front
    riser trim and if the formation turns towards him he needs to increase the trim
    on his outside riser. Because the links in a stairstep formation are similar to
    pivot points these formations need to be turned very carefully.
    Separating a Formation
    Separating a formation needs at least as much attention as building one, especially for safety reasons. Also should it be done high enough. Bigger formations should be separated at 1.500m (5.000ft) and smaller ones at 900m (3.000ft).
    Small formations can be split in reverse order of building letting go one jumper after another. The jumper whose turn it is to go shouts the names of the ones holding him and they drop him. Then he clears the proximity of the formation immediately to give room for the next
    jumper to leave it.
    Larger formations in the shape of a diamond of up to 36 jumpers can be split by using a technique called STARBURST. The starburst is being started by the designated person calling “starburst! - starburst!” which is to be echoed through the formation. Then one person starts
    a count down calling “ok – ten, nine…..two, one, break!“ Everybody else joins the count loudly to make sure that everybody is able to hear it. On “one” everybody get his hands on the controls and on break lets go of the grips to fly out of the formation radially away from the center.
    Peter A. Pfalzgraf

    Rheingaustr. 24

    12161 Berlin


    [email protected]

    By Deleted, in Safety,

    Canopy Formation Parachuting

    By Peter Pfalzgraf
    In the early days of CReW (as canopy formation skydiving used to be called) I wrote and published a little booklet for those who were interested in learning the new sport. Things have changed a lot since then. So, I found it necessary to publish something new to make general information on our sport available to everybody interested. This essay combines techniques and hints from Europe and America. The latest input came from the training camps for the new canopy formation world record attempts aiming for a 100-way formation.
    Canopy and Harness (Figure 1)
    The times are gone where they had all-around canopies that could be used fairly well for any kind of skydive. Such canopies as the Cruisair, ¬U¬nit, Pegasus, Cruislite and Fury were once very common.
    Today, the best parachutes for canopy formation parachuting (briefly known as “CF”, in the old days) are 7-cell canopies. These parachutes are the safest concerning deployment and stability in flight, especially in turbulent conditions. It is no coincidence that reserve parachutes and canopies for BASE jumping are mostly 7-cell canopies. Triathlons and Spectres with Dacron lines can be used for casual CF jumps, although Lightnings are the CF canopies of choice. If you intend to do a CF jump today you are well advised to use a canopy that has been designed for this kind of activity.
    As a compromise for your first attempts, you may use a 7-cell canopy with a thick profile (for instance a student or accuracy canopy). Never attempt CF jumps with elliptical canopies, canopies with wide wing spans (in comparison with the depth of the profile/length in direction of flight) and/or a low profile.
    Today’s CF canopies are available in different sizes for different weight classes. It is important that people intending to join a CF jump use the same type of canopy with the same line length and trim. Furthermore, the wing loading (weight under canopy per square foot) should be reasonably identical to guarantee similar flight characteristics.
    The container of your harness should be big enough for the packing volume of the canopy to make sure it can be closed properly (safety!). There should be no handles, container flaps, pop-top pilot chutes or anything else sticking out that could get caught in another jumper’s lines. Those things could result in unintentional reserve openings or problems on separation. The bridle should be short or even better, self retracting to prevent your pilot chute from being caught in the other jumper’s lines while you are in a formation. You can imagine that separating a plane formation with one jumper’s pilot chute entangled in the other jumper’s lines will most certainly result in serious problems.
    Additional Equipment

    The altimeter should be worn in a way that makes sure it does not get snagged and can always be seen while you have your hands in the toggles.
    The helmet should provide not only head protection but also allow good hearing. It should not cause wind noise that might affect your hearing.
    Every CF jumper should carry a hook knife that can be used in case of an entanglement or wrap. Sometimes it only takes one line to be cut to get free and save a reserve ride.
    The hook knife of course should also be worn in a way that prevents it from being caught or ripped away.
    Your shoes must not have any hooks. They should fit loose enough that you can get rid of them if need be in order to get free.
    It is very useful to wear long socks to protect your legs against bruises and line burns.
    Aerodynamics of the Airfoil
    Lift is the force that keeps a canopy in the air. Opposite to a round canopy that only creates a big air resistance to slow down your descent using a large area of fabric, the square parachute, or airfoil, really produces lift like the wing of a glider for instance. The square footage of an airfoil is approximately one-sixth to one-quarter of a round canopy, and yet has a far lower rate of descent.
    The lift of the airfoil consists of 1/3 high pressure under the profile (similar to the round canopy) and 2/3 low pressure on the top surface created by the undisturbed airflow. This effect is the important matter for us.
    The physical reasons for this effect aren’t pertinent to this particular discussion. What is most important is to know that the main part of the lift depends on the undisturbed airflow on the top surface of the square canopy, forward speed and the shape of the profile. The lift increases with forward speed and grows with the thickness of the profile. The air resistance of the canopy slows the forward speed down.
    Due to the different pressure at the upper and lower surface of the profile air will flow around the sides of the canopy from the bottom to the top following the pressure difference. This effect reduces the lift and is called induced resistance. As a consequence of this, the maximum lift is in the centre of the airfoil. The stabilizers on either side of the profile are designed to reduce the loss of lift by hindering the airflow from the bottom to the top surface. Another way to reduce the loss of lift is to make the airfoil very wide so that the percentage of wing area being affected becomes comparably small. A good sample for this solution is the paraglider. This shape of airfoil is, of course, not good for CF activities.
    Because of the airflow around the sides and also around the tail, a parachute gliding through the air leaves a track of turbulence. The side turbulence creates a zone of turbulent air on either side beginning at the trailing corners of the airfoil. The turbulence of the tail creates a turbulent zone rising from the trailing edge of the canopy.
    It is clear that a parachute or canopy formation flying into such a turbulent zone will be affected by losing lift. Even aircraft flying through the turbulence of a canopy formation will lose considerable altitude.
    Figures 2 and 3 show the shape and position of the zones of turbulence.
    In a formation these phenomenon cause effects that can be noticed clearly. Just the top canopy in a formation gets only undisturbed airflow and has the maximum possible lift. All canopies having a body in front or on a front corner will lose lift due to the turbulence caused by the body out in front.
    Aerodynamics of the basic Formation Types
    Knowing the things mentioned above, we can predict that any type of formation cannot perform as well as a single canopy. That is useful for building formations as it gives the single canopy the potential to approach and dock on a formation due to its extra lift and forward speed.
    In principle all formations consist of a few basic types. Let’s look at the conditions in these.
    The Stack
    The stack (Figure 4) is the most basic formation. To build a stack one jumper sits on top the other jumper’s center cell and hooks his feet behind the center A-lines of the lower canopy similar to sitting on a chair. There will be some tension on the lines because the lower canopy in this type of formation will have a little less lift. In a stack the body of the top jumper is in front of the center cell of the lower canopy. The turbulence of that body meets the airflow of the lower canopy exactly at the point where the main lift is created and leads to a considerable loss of lift. This means that a stack will sink far more than a single canopy.
    The Plane
    The plane (Figure 5) is created out of the stack. The top jumper climbs down the center A-lines and hooks his feet behind the front risers of the lower jumper underneath the slider. The lower jumper supports him by putting on some brakes to increase the lift of his canopy. For this formation type one or two cross connectors are required, which either connect the front connector links (one line) or two lines that connect the front and rear connector link on either side. Otherwise the top jumper might slide back up due to his plus of lift and pull up the slider, which would result in a collapsed lower canopy.
    In a plane formation, the turbulence/loss of lift effect is not as strong. As the top jumper’s body is beneath the two canopies, one might think there is no loss of lift at all, yet the line contact causes deformation in the lower canopy and additionally forces both canopies into a new aspect ratio. This leads to a loss of performance. A single canopy will perform better than a biplane.
    If a plane becomes bigger there will of course, be canopies with bodies in front of them. Planes with more than four canopies will sink faster as the plane formation grows larger.
    The Stairstep
    In a stairstep formation (Figure 6) the top jumper is positioned outside of the lower canopies end cell. He takes a foot grip on the outside A-line. Flying the stair step requires much more experience than flying a stack or plane formation because the link is not as stable. It is more of a pivot point than a stable connection. The lower jumper has to compensate for the influence of the upper jumper’s body to the flight of his canopy. To prevent the lower canopy from coming up and around you can put some tension on the outside front riser of the lower canopy or the lower jumper can stretch the outside leg while lifting the inside leg.
    The stair-step is far less turbulent than the stack and plane. The body of the top jumper only causes turbulence on the outside corner of the lower canopy and that is a part of the airfoil that contributes only a minor amount of lift. That means that a stair step formation is only slightly less efficient than a single canopy.
    Because only one side of the lower canopy is affected, the other side will perform better and cause the canopy to rise and drive forward. If the lower jumper does not compensate for this, his canopy might come up and around, leading to a wrap. To prevent that the lower jumper will start to compensate for the difference as soon as the top jumper has taken his grip. Possible ways to compensate include putting tension on the outside front riser and stretching the outside leg while lifting the inside leg. One might also apply some slight inside brake.
    You can determine how much trim is needed by easing up on the risers or brakes after the canopy is set. Sometimes the formation will fly well with only slight trim or none at all. Nevertheless, the lower jumper should keep a watchful eye on his canopy to immediately compensate, if necessary.
    That wraps up part one. Join Peter in a week or so for Part 2, when we'll dive deep into building and controlling these formations.

    By admin, in Safety,

    Canopy Flight Simulation for Education

    Skydiving requires an action to survive. Freeze, fight or flight are natural reactions to stress but they do not work for skydivers. There is very little time to think about what to do next when the ground is approaching fast. Hence, our response must be quick. We can separate a human reaction into three process: perception, assessment, and execution. These processes happen consecutively. The faster we complete them, the quicker our response is to the changing environment. Let's examine how education and training affects these processes.
    Perception is the process during which we become aware of information: we look at the altimeter to know the altitude, we look around to see if no other canopies are moving to collide with us, etc. Education and past experiences play a major role in a person's perception. We are not necessarily aware of what we look at. Education trains us to look for the right information in the right places. For example, if we do not look around after our canopy opens to see where the drop zone is, we will not turn to fly toward it. On the other hand, even if we see where the landing area is, we may not know how to detect if we can reach it. As a result, we may not make a turn to fly toward the landing area in time.
    Books and instructors tell students where to look and what to see, while videos show us examples. However, once students are in the air, they must make a conscious effort to look in the correct direction and focus on the right information: "It's landing time. The ground is moving very quickly. It should not move so quickly. Ohh... I must look at the horizon, I must not look directly underneath." The goal is to make proper perception a habit, because conscious effort is slow. Habits develop with practice, and practice takes time. A student has not yet developed habits and may forget to think about what to pay attention to, but help comes from the instructor over the radio: "Prepare for landing flare. Eyes on the horizon..." One does not develop a habit by taking a class, reading a book or watching a video. Instead, these sources supply knowledge that can be used during practice, which eventually leads to habit. Simulation of a situation, on the other hand, does help to develop a habit, in a safe environment.
    The emergency procedures that every jumper practices before every jump (you do, right?) is the example of a "simulation". In such "simulation" we create situations and responses ourselves. Another example of a "simulation" is hanging in a harness during a safety day. In this circumstance, an instructor creates an emergency situation for us. Dirt-dive is an example of a non-emergency "simulation". Airplane pilots take the concept of "simulation" further by using flight simulators (http://en.wikipedia.org/wiki/Flight_simulation). The military have used skydiving computer simulators (these are similar to flight simulators) for some time. Nowadays, computer parachute simulation software is available for everyone.
    The second process in our reaction sequence is assessment - making a decision about what the acquired facts mean. We look at the altimeter and it's 2000 feet. Nothing to be done just yet, or maybe we still have a problem with the canopy, or maybe we see that we are not making it to the landing area, etc. Education has the largest impact on the process of assessment. We are taught what actions are required in different situations. At the very beginning, all we need to do is to pick the right action from the proffered set of actions.
    Speed of the recall is important. Repetition is key for a quick recall. Taking a class, reading a book, or watching a video are good ways to refresh our memory (safety days help us do exactly that). The disadvantage of these methods is that they cover very limited number of situations and conditions. For example, we are told that to get back from a long spot we can use rear riser input, but that's only true for a certain ratio of your canopy forward speed and the speed of the wind. In some situations, we may have to use front risers or brakes. Now instead of a simple memory retrieval task, we have to do some reasoning. We may have all the knowledge to do the reasoning properly, but it's slow and error prone (time pressure and adrenalin rush do not help rational reasoning). Simulations offer an efficient way to condition memory by repetition. A computer simulation also allows for an infinite amount of situations with different conditions. It's easier to make a decision when we have already seen such a situation before.
    Execution is the process of acting on the chosen response. Muscle memory allows us to speed up this process. Instructors, books, or videos can not help this process. Muscle memory is developed by repeating an action... but we already know that simulation is good for that! Pulling the cut away and reserve handles while hanging in a training harness or before your reserve is due for a repack are good examples of muscle memory training: we feel how hard we need to pull the handles, what the proper motion of the hands are, etc. Computer simulation can help as well, but it is most effective with a special hardware, which is not yet available at a reasonable price.
    We have covered three processes that contribute to our reaction: perception, assessment, and execution. We repeat them over and over again. Every time we do something, a new set of conditions manifests itself. There is a dynamic and complex relationship between the situation and our responses to it. Instructors, books, and videos can only mention a very small set of examples. Traditional simulation methods (use of the imaginations or/and an instructor) are also quite limited. A computer simulation, however, provides real time feedback for all possible actions that we can exercise in the simulation. We can judge the correctness of our actions based on what happens next.
    Simulation has always been an essential part of skydiving education and training. Computer simulation takes this concept further and allows for even better results. We have seen how it can help us when other means of education and training are less efficient or can not help at all. One may ask: "How good must a "computer simulation" be to be used for training?". A similar question would be "How good must a picture be in a text book?" The answer is "As long as it (simulation or picture) reasonably illustrates the required concepts." No educational tool can or should be used by itself. The purpose of the tools is to make a student think, ask the right questions, and develop the correct responses.
    Given our limited attention span, it's always a compromise between focus on safety and focus on other things, especially for novice jumpers. The faster we get our habits and muscle memory developed, the safer our jumps become. This is why it's important to understand what tools are available to us, and what their limitations, advantages, and disadvantages are. In his book "The Parachute and its Pilot" Brian Germain phrased it this way "When we can acquire the right information, and access this data at the right time, we have a pretty good chance of walking away from sketchy situations." Our goal is "to acquire the right information." We can do this most efficiently when we understand what educational and training tools we have in our disposal: classes, book, videos, simulations, etc. The newest tool in the skydiver's toolbox is computer simulation software. This software greatly complements the other means of education and training. Which, in turn, will result in a safer and more enjoyable sport.
    Author Information:
    Alexander Shyrokov is the founder of Static Line Interactive, Inc.

    By admin, in Safety,

    Canopy Emergencies: Breakaway

    Jettisoning The Main Canopy
    Before we talk about the series of problems you may encounter with your main canopy, it is important to discuss the types of cutaway (main canopy disconnection systems) that are in common use and their procedures. The breakaway or cutaway is an emergency procedure that involves jettisoning the main canopy prior to deploying the reserve. Originally, the cutaway was performed with a knife and the lines were cut to separate the canopy from the harness. Today, we use canopy releases to breakaway. The breakaway procedure should be executed immediately under rapidly spinning malfunctions because ever-increasing centrifugal forces will make arm movement difficult, and may cause you to lose consciousness (red-out) due to the blood flow to your eyes.
    The decision altitude for the breakaway is 1,800 feet. This is your safety margin, above this it is safe to try to clear the malfunction but at this point, all clearing work must stop. Watch your altitude. The breakaway must be commenced above 1,600 feet to assure you plenty of time to get the reserve out. Under high-speed malfunctions, you may be just seven seconds off the deck at this point, and it may be necessary to forget the breakaway and just pull the reserve.
    To breakaway, spread your legs (for lateral stability and push them back as far as possible while bending your knees about 45 degrees (only). Arch your back and pull your head back but keep your chin resting on your chest and your eyes on the handle(s). On release you will fall into a stable, face- to-earth position.
    Body position during the breakaway is very important. If you are not falling away correctly, you may become entangled in the canopy and/or lines of your deploying reserve. Even with good body position, breaking away from a violently spinning malfunction may throw you tumbling across the sky.
    The breakaway procedure is as follows:
    Two Action System(TAS)
    The TAS has two handles: Pull the first one (usually a Velcro-attached pillow handle located on the right-hand main lift web), to release both risers (a single point release). Then activate the reserve by pulling the other handle (usually located on the left-hand main lift web).
    A. Total malfunction (nothing out)

    Do not waste precious time breaking away; just pull the reserve.

    LOOK at the reserve ripcord handle and arch.
    REACH for the reserve ripcord handle with both hands.
    PULL the reserve ripcord handle with both hands.
    B. Partial malfunction (canopy out but not working properly)
    There are two schools of thought on how to perform the breakaway action using this system. The first one presented is in the USPA’s Skydivers Information Manual, “Section 8-3.16.” While it states “Look at the reserve ripcord handle...” (step 3), it says nothing about the choice of one hand or both on the breakaway handle. It is as follows:

    LOOK at the breakaway handle and arch. The arch should keep you from making a backloop when you jettison the main.
    REACH for the breakaway handle (presumably with both hands).
    LOOK at the reserve ripcord handle before breaking away.
    PULL the breakaway handle and throw it away while continuing to keep your eyes on the reserve handle.
    REACH for the reserve handle with both hands.
    PULL the reserve ripcord.
    CHECK over your shoulder for a pilot chute hesitation.
    CHECK your reserve canopy, look around and prepare to land.

    Note: For student equipment, and something that is becoming more popular on experienced jumper equipment, there is a device known as a reserve static line lanyard RSL (sometimes called a Stevens lanyard). This is a piece of webbing attached from the right side riser (or both risers on some systems) to the reserve ripcord cable. It is designed to pull the reserve ripcord out of its locking loop(s) as you fall away from the main parachute after that main canopy is cut away, thus allowing the reserve to deploy. When installed and operating properly, it will usually beat you to the manual deployment of the reserve. However, it should not be relied upon, for after all, along with an automatic activation device (AAD — described in Chapter 7), it is merely a back-up device to your proper execution of emergency procedures. This system can be disconnected (if necessary) by personnel who know what they are doing.
    It is a possibility that when you perform a breakaway using both hands on the breakaway handle, there is a fraction of a second of disorienting instability as the maneuver is executed. Although you are supposed to be looking at the reserve ripcord handle, you still need to move one or both hands to it from whatever position you are in at the conclusion of the breakaway-handle pull. The ripcord handle may move from where it was (on the harness) under the tension of the partial malfunction to a different position during this moment. It is a possibility that there may be an additional second or more of elapsed time as you reach for the reserve ripcord handle.
    Therefore, there is a second school of thought about performing the breakaway, which is, if you are about to execute a breakaway and you put your right hand on the breakaway handle and your left hand and thumb through the reserve ripcord handle, there will be no lost time reaching for the reserve ripcord after the breakaway is executed. Here is a typical scenario:

    LOOK at the breakaway handle and arch. The arch should keep you from making a backloop when you jettison the main.
    REACH for the breakaway handle with your right hand.
    REACH for the reserve ripcord handle with your left hand, placing your thumb through the handle to ensure that you have a firm grip on it.
    PEEL and PULL the breakaway handle to full right arm extension. Throwing it away is optional.
    Immediately after you’ve pulled the breakaway handle with your right hand, PULL the reserve handle out to full extension with your left hand.
    CHECK over your shoulder for a pilot chute hesitation.
    CHECK your reserve canopy, look around and prepare to land.
    In this scenario, there is no hesitation in looking for a reserve ripcord that may have moved, thus it may save a second or two of precious time.
    The Single Operation System (S.O.S)
    The Single Operation System is a one-handle/one-motion system. The S.O.S. has a combined handle, usually on the left main lift web, to release both risers and activate the reserve. The S.O.S. has a reserve static line lanyard (Stevens lanyard) from one riser to the reserve ripcord. The purpose of the S.O.S. is to eliminate one the motions in the breakaway sequence; that of separately pulling the cutaway handle. By pulling the reserve ripcord all the way, you accomplish both the breakaway and the reserve-ripcord pull in one complete action. With a two-action system, half a breakaway is worse than no breakaway at all unless you have an RSL.
    The S.O.S. usually produces full deployment of the reserve canopy in less than 100 feet. If you find an RSL on your piggyback harness/container assembly, you should leave it on. When you and your instructor develop enough confidence that you will pull the reserve after a breakaway, you can do away with the line if you wish.
    Total or Partial malfunction
    In the event of a total or partial malfunction:

    LOOK at the combination release/ripcord handle and arch.
    REACH for the combination handle with both hands.
    PULL the combination handle with both hands to full arm extension.
    REACH back with one hand, grasp the cables where they come out of the housing.
    PULL AGAIN to clear the cables and
    CHECK over shoulder for a pilot chute hesitation.
    CHECK the reserve canopy, look around and prepare to land.
    Never depend on the reserve static line device (Stevens lanyard). Always pull your reserve ripcord cable all the way out of the housing immediately after breaking away.
    Canopy Transfer

    Canopy transfer is a third type of breakaway procedure sometimes used in Canopy Relative Work by those who believe something is better than nothing. If your main canopy becomes damaged or tangled on a jump and it is still flying forward, you may pull your round reserve and drag it behind you, full of air. Once the reserve canopy is inflated, jettison the main. This maneuver is extremely risky with a square reserve canopy as two squares may fly around and into each other. This type of problem is discussed later on in detail.
    Harness shift
    When you jettison the main canopy, your harness will shift downward taking the reserve ripcord location with it. Therefore, it is essential that you keep your eyes on the reserve ripcord handle, if your hand is not already grasping it, when jettisoning the main canopy.
    Now that we have covered cutaways (breakaways), let’s discuss when and where they are used.

    By admin, in Safety,

1 1