1 1

Safety

    Body Language: Helping Your Canopy Open Better

    Many factors determine the way your canopy opens. The design of the canopy and the way it is packed are two important factors, but body position also plays a major role.
    We learn to deploy our canopies in a basic, stable position as students, and many of us don't give this skill much more thought after that. Unfortunately, we sometimes develop a few bad habits that have a negative effect on our openings.
    Even after making thousands of jumps, people have been surprised to find that a few small adjustments to their body position during deployment can significantly improve their openings.
    This article is about deploying a parachute, one of the most important things you do on every skydive. It might be a good idea to practice these techniques on the ground before trying them in the air. You might even want to make a solo jump and try some practice pulls using these techniques before it's actually time to deploy.
    If you are not a licensed skydiver yet, or have just recently earned your license, you should discuss this article with your instructor before trying anything you read here. He or she may want you to focus on more important skills, like altitude awareness and basic stability, rather than adding anything new to your pull sequence.
    No Need for Speed
    The speed at which you are falling when you deploy your canopy can have a large effect on the forces generated during the opening. As your airspeed increases, these forces also increase.
    Many of today's canopies are designed for relatively slow openings, and some will not be affected greatly by a little extra speed at deployment time. Some jumpers even find that their canopies open better when they are falling a bit faster. This is not something you should take for granted, though.
    Higher airspeeds might not cause a canopy to open hard as long as everything else is just right, but small variables tend to have greater effects at higher airspeeds. If you rush your pack job one time and let things get a little sloppy, or if your canopy is starting to go out of trim, extra airspeed could make the difference between an opening that is slightly abrupt and one that really hurts.
    Slowing down before you deploy can provide a greater "margin of error" and reduce the effects that other variables have on your openings. Slowing down can be especially helpful if your openings are frequently or even just occasionally faster than you like them to be.
    Vertical or "freefly" body positions like head-down or sit-flying allow you to reach much higher airspeeds than "flat" body positions. This extra speed makes flattening out and slowing down before you pull particularly important. Both beginners and experienced freeflyers should keep this in mind when planning their dives. Even if you don't freefly, simply tracking at the end of a belly-to-earth jump can significantly increase your airspeed, and you may still find it helpful to "flare out" of the track and slow down before you deploy.
    To flare out of a track, spread your arms and legs and de-arch slightly for a second as shown in. This will help bleed off any excess speed. Keep your arms and legs spread out and maintain a slight de-arch while you wave off, remembering to look around for other jumpers. As you finish your wave-off and start to pull, relax back into a normal arch. If done correctly this doesn't take a significant amount of time and becomes a natural part of your wave off.
    What Are You Looking At?
    Take a moment to notice where you are looking while you reach for your pilot chute. If you jump with a video camera, look at some of your openings on tape. What do you see in the video as you pull? Are you looking up at the horizon, or down at the ground below you? Do you look back toward your pilot chute handle as you reach for it? Do you look over your shoulder after you pull?
    Older skydiving rigs used spring-loaded main pilot chutes activated by a ripcord. Even in the late 1990's this type of system was still used on most student rigs. Those of us who were trained using this type of system were taught to look for the ripcord handle before grabbing it. We were also taught to look over one shoulder and "check" after pulling the ripcord. Looking over your shoulder changes the airflow over your back and helps clear pilot chute hesitations, which are common when using a spring-loaded main pilot chute.
    Most licensed jumpers use hand-deployed main pilot chutes, and these are becoming the standard for student training as well. Even if years have passed since they transitioned to a hand-deployed pilot chute, many experienced jumpers still have the habit of looking for their pilot chutes as they reach for them and checking over one shoulder after they throw them. Unfortunately, it's almost impossible to look over your shoulder and keep your shoulders level at the same time. Looking over your shoulder also tilts your container to one side.
    Although large, docile student canopies may not get offended if your shoulders and container are uneven, more responsive sport canopies will be much happier if you keep your shoulders level. Having your shoulders and container tilted as the canopy deploys can cause off-heading openings, line twists, and can even cause a hard opening.
    Most of us have our pilot chutes mounted on the bottom of the container, so trying to look for the handle is really useless. Even if you still use a legstrap-mounted pilot chute, you probably can't see the handle very easily in freefall. Since hand-deployed pilot chutes are thrown into the clean air next to your body, pilot chute hesitations rarely occur and checking over your shoulder every time isn't necessary.
    Some people have a habit of looking straight down as they deploy. This tends to put you in a slightly head-low attitude, which can increase your airspeed slightly. It can also amplify the opening force your body feels, since this force will mainly be transmitted to your shoulders when the canopy reaches the end of the lines. Also, your legs may swing through a wider arc as the canopy sits you up in the harness, making the opening feel more abrupt.
    Instead of looking for your handle or looking down at the ground, try lifting your head up and looking out at the horizon as you reach for your main deployment handle. This puts you in a more head-high attitude. The opening forces will be transmitted farther down through the harness instead of being concentrated at your shoulders.Looking at the horizon also helps keep your shoulders and container level as you pull.
    After throwing the pilot chute, bring your arms back into a neutral freefall position and think about keeping your shoulders level as the deployment bag lifts off of your back. You can also push your hips down slightly and bend your knees just a bit, as if you were in a very slow backslide. This keeps your head and upper body high.

    In the past, some jumpers have recommended "sitting up" during the deployment. This can actually work well as long as it is done correctly, but if you sit up too much or too soon there is a risk of increasing your airspeed or even becoming unstable. Simply lifting your chin, looking at the horizon, arching a bit more, and relaxing your legs slightly has a similar effect to consciously sitting up, and you're less likely to overdo it.
    Some people who jump with side-mounted cameras believe it's necessary to keep their heads down when they deploy, to prevent a riser from hitting the camera. This might be an issue if you have narrow shoulders or wear your chest strap very tight, leaving less room between your risers. It also might be a problem if your camera sticks out from the side of your helmet quite a bit. It's best to minimize this problem by keeping side-mounted cameras as small, streamlined, and snag-free as possible. If you're convinced it's necessary to keep your chin down, at least keep a good arch and relax your lower legs to keep your shoulders higher than your hips, and also focus on keeping your arms and shoulders level in the relative wind.
    Back in the Saddle

    As soon as the canopy sits you upright in the harness, try putting your feet and knees together for the rest of the opening . Putting your legs together helps keep your weight even in the harness and reduces the chances of an off-heading opening. This is especially effective if you are jumping an elliptical-type canopy. Just the weight of your legs swinging around or a small weight shift in the harness can cause some of these canopies to start turning.
    If you grab your risers as the canopy is opening it's best to hold the lower part of the risers, just above the 3-Ring system. If you grab the risers up near the toggles you might make the canopy turn by unintentionally pulling one riser or releasing one brake. If you hold on to the bottom of the risers, you can still slide your hands up quickly to steer with the risers or release the brakes if necessary.
    Some jumpers try to keep their openings on heading by actively steering with their rear risers while the slider is still up against the canopy. This works with some canopies, but other canopies don't like it at all. You may get better results if you just relax, sit still, focus on keeping your weight even, and wait until the slider starts to come down before making any corrections with the risers.
    Watch Where You're Going
    In a first jump course we are taught to check our canopies to make sure they open correctly. Although this is important, it can also create a very bad habit. Many jumpers look up at their canopies as soon as they start to open, and continue watching the canopy through the entire opening sequence. Some people continue looking up for several more seconds while they collapse their sliders and release their brakes.
    If another person opens close to you, you may only have a second or two to react in order to avoid a collision. Staring up at your canopy for five or ten seconds after you deploy is like driving down the highway while staring up at the roof of your car.
    Fortunately, a few techniques can help you avoid this problem.
    Many students are taught to count out loud while their canopy deploys, saying "arch, reach, pull, one thousand, two thousand, three thousand…" If you don't do this already it's a good habit to create, and can help you keep track of time during the deployment sequence.
    You will hear and feel different things during each stage of the deployment. A second or less after you throw your pilot chute, you should feel the snatch force pull you upright in the harness. This is the force of the canopy fabric hitting the relative wind as it comes out of the deployment bag.
    The canopy will then snivel. The snivel is the portion of the opening where the slider stays against the bottom of the canopy, reducing your airspeed before the canopy starts to inflate. There will still be a lot of wind noise during the snivel, and you will still have a sensation of falling. This may last for a second or two, or even for several seconds.
    The inflation occurs as the slider moves down the lines and the cells fill with air. Things become quieter once the canopy inflates. Even under a canopy that inflates very slowly and smoothly, you will still feel the transition from falling to gliding. You may also hear the slider flapping above your head once it comes down.
    Once you become more aware of these sensations you will find that your other senses can tell you as much about your opening, if not more, than your eyes do. Soon you will feel comfortable looking out in front of you during the entire opening, rather than watching the canopy itself. This allows you to watch for other jumpers, and many people find this reduces off-heading openings as well.
    "But," you may ask, "if I don't watch my canopy open, how will I know if I'm having a malfunction?" Take the advice of someone who has cut away a number of misbehaving canopies: you will probably know right away if you are having a malfunction. They tend to feel very different from a normal opening, and you will probably know something is wrong before you ever look up.
    If you start to count after throwing your pilot chute, and reach "two thousand" or "three thousand" without feeling the snatch force, there is obviously a problem. This would be an acceptable time to look back over your shoulder and check for a pilot chute hesitation or pilot chute in tow.
    Once you know how many seconds the snivel usually lasts on your canopy, you will also know if that part of the opening is taking longer than normal. You can usually feel line twists right away, and if you start spinning wildly you'll surely want to look up at your canopy and see what's bothering it.
    What if the opening feels perfectly normal? Unless you need to avoid another jumper right away, you should still look up and check your canopy right after it inflates. You might not notice a tear, broken line, or similar problem until you look up. Even in these situations, if the opening felt normal then the canopy is probably flying well enough to give you a low rate of descent. Assuming you deployed at a reasonable altitude, you should have enough time to do a control check and execute emergency procedures if necessary.
    If you've been watching your canopy open every time then you might not feel ready to stop doing this during your very next jump, but you should start developing better habits as soon as possible. Start counting when you throw your pilot chute, and notice how long each stage of the deployment sequence takes. Pay attention to what you are hearing and feeling during the opening. Soon you won't need to watch the whole deployment, and will be able to pay more attention to your body and your surroundings.
    Improving your body position and increasing your awareness when you deploy your canopy can produce great results. You might not remember everything in this article during your next jump, but at least think about trying these suggestions one at a time, at your own pace. You might be amazed by the difference a few small changes can make.
    About the author: Scott Miller runs the Freedom of Flight Canopy School at Skydive DeLand in Florida (www.freedomofflight.tv) and holds canopy skills camps at other DZ's throughout the year. He has worked at several drop zones as an AFF instructor, tandem instructor, and freefall photographer, and also worked as a test jumper for Performance Designs.
    This article first appeared in Skydiving Magazine, Volume 25, Number 7, Issue #295, February 2006. Printed here by permission of the author.

    By admin, in Safety,

    Deployment Emergencies

    Common ripcord and hand-deployed pilot chute malfunctions are the lost handle and the hard pull.
    Submitted by plante
    Lost Handle
    Lost handle or out-of-sight hand-deployed pilot chute. Some ripcords are held in place by elastic webbing or Velcro® cloures. If the ripcords come out of these places, they may be blown out of your sight. Some puds (knobs or handles for hand-deployed pilot chutes) attach with Velcro closures, and some are stowed in elastic pockets. There are pros and cons to where these pilot chutes and deployment handles should be mounted. Either one may separate from the container and blow up behind you. Search for the ripcord (one time only) by following the harness to the ripcord housing with your hand. Search for a hand deployment device (one time only) with your hand by following the container to the area where it is supposed to be mounted — perhaps even as far as the closing grommet. If you can’t locate the handle immediately, pull your reserve ripcord. Practice this on the ground periodically.
    Lost handles and hand-deployed pilot chutes can also occur after the pull if you fail to pull far enough. Make sure you pull the ripcord all the way out of the housing, or if using a hand-deployed pilot chute, pull the pud to arm’s length before you release it.
    Hard Pull
    The hard pull may be caused by a bent or rough pin, a hand-deployed pilot chute bound up in its pouch, or you may have packed more canopy in the center of the container instead of filling the corners. If you feel resistance to your pull, give it two more quick tries (perhaps even with both hands while maintaining the arched body position) and then if that doesn’t deploy the main parachute, pull your reserve ripcord immediately. After a number of jumps, it is normal to become somewhat complacent about the pull; you may give it a relaxed, half-hearted jerk. The pull may take as much as 10 kg (22 lbs.) of force, so pull again. If continual hard pulls are bothering you, you might choose to spray a non-petroleum-based silicone or Teflon® fluid on your ripcord cable or your closing pin and your closing loop. This will make quite a difference and it will last for many jumps. You may occasionally have to do it again as dirt and grime builds up on your pin or ripcord cable system. Inspect your system for any signs of roughness. If they exist, get a rigger to replace the rough component with a smooth one.
    Pilot Chute Hesitation
    A problem you could have with your reserve deployment, or a main with a spring-loaded pilot chute, is the common pilot chute hesitation. Hesitations can happen to hand-deployed mains but they are not as common. Hesitations occur when the pilot chute momentarily flutters in the low-pressure area behind you rather than catching air. The hesitation may be caused by a bent or weak pilot chute spring, but usually the pilot chute is just sitting in the dead air space created behind you when you are in the stable position. Sometimes the pilot chute jumps upon release but fails to travel far enough to get a grip on the air rushing past you. It may drop back down on your back and just bounce around or just lay there. If it was hand-deployed, you may not have given it a good throw.
    To correct the problem, you may turn on your side during the post exit or pull count, allowing the airflow to inflate the pilot chute and pull it free, you may peek over your shoulder after pulling the ripcord, or you may sit up to dump (deploy your canopy). This last method of pulling, then sitting up (almost the start of a backloop) also reduces the opening forces on your shoulders, but it can lead to other problems such as trapping a tight-fitting deployment bag in its container. Consult with an instructor who is familiar with your system prior to attempting this type of maneuver.
    Pull-out v. Throw-out
    The pull-out and throw-out pilot chutes are preferred by experienced jumpers, but students (except IAD students) use the ripcord and coil spring pilot chute combination. For a detailed explanation of these three systems, see the chapter on equipment.
    Trapped Pilot Chute
    If the pilot chute is not properly stowed in its pocket, it may bunch up and jam when you try to extract it. The trapped pilot chute results in a hard pull that may or may not be cleared. If you find you have a hard pull, try one more vigorous pull before you go for your reserve.
    Pilot Chute In Tow
    Pilot chute in tow may be short or long. It is short when the pilot chute bridle is looped around something such as a harness strap. (A proper gear check could have avoided this problem.) If you have one of the rare bellyband mounted throw out models, make sure that the bellyband is not twisted. If the pilot chute bridle is wrapped around the harness (such as on a twisted bellyband or leg strap), tugging on it will only result in a (short) trailing pilot chute. Check the bridle routing during packing, have it checked in the equipment check prior to boarding the aircraft and check the routing again prior to exit. Twisted bellybands and twisted leg straps are a significant cause of pilot chutes in tow.
    The pilot chute in tow is long when the pilot chute pulls the bridle to its full extent but does not pull the pin securing the main container. The failure may be due to a damaged pilot chute (producing insufficient drag), a rough pin, a tight main container (canopy stacked too high), or a closing loop which is too short. The long pilot chute in tow is more likely on sub-terminal velocity jumps.
    Make sure the bridle-pin connection is not worn, that the pin is smooth and curved, not straight (unless it is supposed to be such as in pull-out pilot chute systems), and that the locking loop is not too short.
    If you are faced with a long pilot chute in tow, never try to clear it. A recent USPA article (Parachutist, June 1997) stated that if you have a pilot chute in tow, deploy the reserve immediately. Therefore, it is treated as a total malfunction. Other experts in the field take the position that if there is anything out behind the container, including a spring-launched or hand-deployed pilot chute, execute a cutaway and reserve deployment immediately. Note: Most student equipment is Single Operation System (SOS) oriented. This means that pulling the reserve handle will execute the cutaway (disconnect the main risers) then deploy the reserve all in one smooth action. A two-handle system requires a separate cutaway handle to be pulled to disconnect the risers, followed by a pull of the reserve ripcord.
    How to handle a pilot chute in tow has been the subject of great debate and much beer has been consumed discussing it. While there are exceptions and strong feelings about what has been stated above, time is usually too short to consider them. After the reserve starts to deploy, the main container may go slack enough that whatever kept it closed is no longer doing so, therefore the main may start to deploy. If the main was disconnected from the harness by the action of a cutaway, it will probably not be anything more than a temporary nuisance. However, one must always be prepared for possible entanglement of the two canopies whether a “cutaway” has or has not been performed.

    By admin, in Safety,

    Wingsuit Skydiver Saved by AAD After Collision (Video)

    The following video was posted on social media last week and shows a harrowing scene of a wingsuit jumper suffering a collision shortly after exit. The collision appears to knock the jumper unconscious, as he then begins to spin uncontrollably as he descends in freefall. The spin amplifies the lower he gets - until finally his AAD activates and saves his life by crucially firing while he is seemingly unconscious.
    You can follow or contribute to this conversation in the following forum post:
    A forum post from a Dropzone.com user has shed some light on the situation...
     
    "If I remember correctly group of 4. Leader fumbled exit a little. The 2&3rd guys start flying the planned direction right on exit. The 4th guy has the time and awareness to see the leader and starts diving to the leader. Guys 2&3 now correcting from intended flight path toward leader, intercepted by guy number 4. None of them are new guys. Super lucky that the guy who had the AAD fire walked away with no major injuries. The guy who hit this guy is a good friend of mine and is very heads up and a skilled 4-way flier with more WS jumps than FS. The example here is that if it can happen to guys like him it can happen to you." - Slimrn
    The topic of AADs can sometimes be a controversial one, many experienced jumpers believe they don't need them and some even view dropzones that have AAD requirements negatively. However, this event goes to show that sometimes the AAD can play a crucial role in saving your life, especially in the case of midair collisions which result in a loss of consciousness.

    By Administrator, in Safety,

    Habit is Stronger Than Reason

    Have you ever realised that you feel something is not right in the system and something must be done about it? The question is how many times you did something to improve things…..?
    Avoidable Fatalities
    The purpose of Education in Skydiving and Rigging is to facilitate learning. Nothing else! All things learned are important and often vital to the skydiver- our sequence emergency procedures, wrong decisions under pressure and improperly done maintenance and repairs can end in disaster and they have. If there is any other interests involved in the education system- the process is ineffective. Also there is a difference between education in skydiving and public schools. If students in public education are to experience the result from what they learned in school or college years after graduation, skydiving students will need what they learned literally the same or the next day.
    A study was carried out by Hart, Christian L. and Griffith, James D. (2003) "Human Error: The Principal Cause of Skydiving Fatalities". Here are a couple of points:
     
    “Of the 308 fatalities that were reported between 1993-2001, 264 (86%) were categorized as Human Error, indicating that human error was deemed to be the principal causal factor in the mishaps. The remaining 44 (14%) fatalities were categorized as Other Factors, indicating that human error did not play a principal role in those mishaps. Therefore, human error appears to be the principal causal factors in the great majority of skydiving fatalities.
    Within skydiving training and education programs, specific attention should be given to human error, and training should be deliberately aimed at reducing human error mishaps. In the design of parachuting equipment, attention should be given to designing systems that increase skydiver situation awareness and increase the probability of correctly carrying out deployment and emergency procedure while under stress and time pressure.”
    I find it unacceptable that in the 21st Century with the level of science and experience in the sport we have 86 percent fatalities that have resulted from avoidable mistakes.
    In skydiving, critical situations require making correct decisions and executing proper action. This causes increases in pressure and cognitive load, beyond the state of flow that impairs our ability. When the cognitive load increases, our limited cognitive capacity is exceeded and we become overloaded. Our brains cannot process the large volumes of information being generated by the situation and we can fail to make accurate decisions. Example is tandem bag lock malfunction- requires very fast thinking, change of standard emergency procedures, reaction and execution when RSL is connected. However, if RSL is not connected- things are way easier- action is as usual- cutaway and reserve deployment. This is just an example where correct training can significantly reduce the pressure or lead to positive outcome. Knowing that there is direct connection between the previous training taken and how the skydiver would react under pressure is vital. Namely our gut feeling is what determines our reactions under pressure and lack of time. It all happens simultaneously before we put everything in words. So someone that has never used RSL as a backup system would go first for the reserve handle after cutaway and will almost never check for main risers clearance.

    In the late 80’s and 90’s of the last century, there were significant discoveries in phycology that explain a lot how and why humans make certain decisions under pressure. Unfortunately skydive training still has not caught up with psychology. Mirror neurons is one of these discoveries. For example, neurons in our brain fire symmetrically to match our instructor’s emotions. So, if the instructor is very positive, enthusiastic and smiling, about 20-30% of the neurons in the same area in the student’s brain, responsible for these emotions fire as well. The result is that students assume that if the instructor is that positively charged- everything must be in order. It is the same when the instructor looks negative, unhelpful, concerned- the student is experiencing a grade of freeze, flight response and the performance goes down. This is just a generalisation but it explains why students love enthusiastic instructors, regardless how competent they are. However, students also can identify incompetence hidden in positive attitude. There is also an explanation for that recently discovered.
    In this article, I will try to scratch the surface on training. Combining psychology and training in skydiving is going to be part of a different publication.
    In skydiving we have two types of Education- Safety education and skills improvement training. They overlap and mix all the time but they stay different things. Example is the training during the new skills courses- initial AFF, Tandem and AFF Instructor certifications. They all have two parts- the Safety part, which teaches the student/candidate/ how to survive the skydive with the new equipment and procedures and the Skills improvement part- how to do it well. This is very important since decision making is heavily influenced by the level of competence and skills in these separate areas. Both, the student and the teacher/instructor/ should know where they stand in that- at what stage of the training and learning process they are. Even more, the training for a particular skill must match the psychological reasons influencing how the student will react in this situation. It’s important to know why people make fatal mistakes and how to avoid them- you never know when a simple flight back to the landing area can turn into a situation that requires emergency procedures.
    Approaching Education Differently
    Looks like education in skydiving suffers from a bit of amnesia! It is based on the industrialised system of education. This system came out during the industrial revolution and it was designed to serve the needs of the manufacturing process- to produce a workforce that follows algorithms. Basically, it’s a system that tells you how to do things, without much explaining. The student is instructed not thought. This all works well when in the manufacturing! And we have all seen the big emergency procedures charts that look like wiring diagrams like they are designed for a computer processors to follow.  However, people are not machines but organic creatures and in addition they have to make their own decisions under pressure. Industrialised system is based on standardisation and conformity! It is true that these principles are a must in skydiving and they define the skills necessary for surviving the skydive with- must know, must do and must not do. But there must be a clear line where they begin and finish because any irrelevant and wrong information or negative emotions significantly affect the decision making process. The fact that a student does not understand what causes our bodies to turn in freefall creates negative emotions and can cause them to fail the stage.
    Conformity and standardisation also contradict the principles on which skydiving and life for that matter have flourished over the years- diversity and creativity. Every single person is different. Not a single person’s life is the same as anybody else’s. There’s no two persons on this planet that are the same. So why skydiving training is standardised to that extent? One of the results is that year after year there’s a great amount of people that give up skydiving after they get their A licence. And the reason is that they don’t want to spend a long time and a lot of money doing relative work with B rels. Most of the students started skydiving because they wanted to do something else- usually freeflying or swooping. There is a great amount of students that never complete the AFF course as well. If a private company was losing such an enormous amount of their clients every year, they would say- “Maybe it’s not the customers, maybe it’s something we do”.
    If equipment and training courses were put under the compatibility lid some time ago, they would never advance more than the static line course and round military parachute stage!
    People are also curious and creative. They want to learn. Everyone knows that students and instructors start their career with a great amount of curiosity and want to learn and keep this going forever. Curiosity is the engine of achievement. One of the effects of the current culture, has been to de-professionalise instructors. There is no system in the world that is better than it’s instructors. Instructors are the lifeblood of the success of drop zones, but teaching is a creative profession. Teaching, properly conceived, is not a delivery system. Instructors should not be there just to pass on received information. Great instructors do that, but what great teachers also do is mentor, stimulate, provoke, and engage.

    Another big problem with the industrial based system is that it never covers everything that we need to know because it is based on what has happened so far. Especially in recent years, it presents you with a list or diagrams with possible situations. What happens if you get into situations that are not on the list?! Then you need creativity! A good example is the tandem fatality resulted from a turn initiated at about 200ft and the control line and toggle got hooked on the disconnected side passenger connector. The tandem pair entered into a continuous diving turn. The tandem instructor ran through the given emergency procedures diagram but there was nothing for this particular situation. The most he could think of was- cutaway and deploy reserve. Unfortunately it was too low. However, there were at least two solutions in this case that were not on the diagram- cut the break line and try landing with risers or counter the turn with the other toggle and land on deep brakes. Compliance in this situation didn’t equal safety but provided a false sense of safety. Situations like this require some creativity or divergent thinking. And we use divergent thinking all the time in skydiving- when we exit and fly different tandem clients, when different aircraft changes the inflight procedures, when tailoring the stage for a particular AFF Student, when packing reserves or repairing equipment etc. “Divergent thinking is a thought process or method used to generate creative ideas by exploring many possible solutions. It typically occurs in a spontaneous, free-flowing, "non-linear" manner, such that many ideas are generated in an emergent cognitive fashion. Many possible solutions are explored in a short amount of time, and unexpected connections are drawn.”
    There is another system of education, which is based on reasoning, where cause and effect are the significant element. This is the system to which we owe the development in skydiving and skydiving equipment- people trying different things and improving the ones that work. With this system, understanding how and why things happen is the driving force. That’s how basic military parachutes were improved for sport parachuting to get to the current state of the art canopies and harness containers. This is how we all got where we are now. With this system, the student’s safety and progression are the important thing, not the standard of “pass or fail” and the learning process can be tailored so the students can learn effectively. In this system both- student and instructor are aware of the level of competence /unconscious incompetent, conscious incompetent, conscious competent, unconscious competent/ the student is in.  Right now there are thousands of consciously incompetent skydivers and instructors about their own equipment but they are expected to deal with extraordinary situations with competence. They simply do not know how their reserve system or components exactly work and what potential problems they can cause them. As a result, these licenced skydivers are not ready to deal with a number of issues. If you knew that if the Cypres fires in head position and the reserve might hesitate, how materials and body position affect the reserve openings, what the reserve pilot chute is, etc. you would consider your actions. The level of competence/competence- confidence loop/ directly affects the performance and decision making in every situation- challenging or threatening. The more competent you are with equipment and situations, the more pressure is reduced and it is easier to make decisions.
    All this is not that new and there is wonderful work done by instructors and dropzones. However, it is happening not because of the current standardisation and command and control culture but despite it. Yes, sometimes habit is stronger than reason, but reason always prevails eventually.  Maybe it’s time the available knowledge in the 21-st century about learning, training, psychology and the connection between them to be implemented accordingly. While doing that, some accidents could be prevented.
    After all, skydivers are organic creatures and parachutes are just mechanical systems operated by skydivers. Nothing magical happens up there! The magic we feel is only in our heads!

    ---------------------------------------
    K.B
    Jumps - 25 000+
    AFF, Tandem Instructor, Freefall Photographer
    Rigger- FAA all types, APF Rigger Examiner
    Master of teaching, Biology and Chemistry

    By glhsystems, in Safety,

    What You’re Doing Wrong As A Skydiving Student

    And What You Can Do To Fix It

    Image by Gary WainwrightI’m not a teacher.
    I’m forehead-slappingly, eyes-avertingly, hide-your-facingly terrible at it, actually.
    Luckily, I’m lucky enough to count as friends some of the best airsports teachers in the world. (Whew.)
    This article is a collection of short answers from several of these. They’re top-level coaches/instructors/examiners, and their experience spans in several disciplines. They’re also incredibly wise, beautiful souls. I went to them with this question, so important for all of us students on the edge of the world:
    If you could cure all your students of one thing they do that gets in their own way, what would it be?
    Here’s what they had to say.
    Listen up.
    “Rushing. I see a lot of students that are determined to pack too many things into one jump. Then they end up flailing; when they don't nail the first part, they're confused as to whether to go back and work on the first part or move on to the next part anyway. They lose a lot of time, and they get very frustrated. Pick one thing. Do it perfectly. Stop. Then move on to the next thing.”

    - Joel Strickland: Freefly & Tunnel Coach; Double British National Champion, Freefly & Freestyle
    “If I could cure all my students of one thing, it would be to erase the idea that everything about them is static and unchangeable. Once a student believes in their own self-efficacy -- believes in the idea that all that they are is changeable in a positive direction -- believes that everything from their physical reactions to their fears can be modified and updated -- anything is possible for them to learn.

    - Matt Blank: Wingsuit Skydiving Coach, Lightning Flight Wingsuit & Freefly School
    “I’d get them to stop watching YouTube. That creates pre-conceived notions of what they should be doing. Either that, or I’d encourage them not to freefly from jump 26 to jump 199 -- when they do, their belly skills suck dust when it comes to their FFC.”

    - Douglas Spotted Eagle, Wingsuit Skydiving Instructor
    “Often, they don’t respect the progression and embrace their inexperience. You must do both.
    It makes sense to one day aspire to wingsuit BASE jump from a cliff, but it can be difficult to focus your efforts where they are the most effective if you’re fast-forwarding years into your career. Your instructor, who you possibly selected because he or she wingsuit BASE jumps, wants you to focus more on finding the range of your beginner or intermediate wingsuit -- and recovering from instability in it -- before talking about how the wingsuit BASE start works. I find that many students seem to want faster returns for their efforts, and they seem to get frustrated with their own learning process.
    I can appreciate the way that we latch onto that dream of human flight, but i want to pass on an outlook where each individual skill is a whole and complete activity by itself that takes time and effort to master before being combined with other skills. So when you combine a set of skills (for example: rigging, canopy control, site selection, weather, bodyflight, wingsuiting and experience in the subterminal base environment), then you can make smart decisions. When you lack experience or skills in a certain area, you begin to lose the full picture.”

    - David Covel: Wingsuit Coach, BASE FJC Instructor, AFF Instructor, TI
    “I would cure them of self-doubt. It takes courage and confidence to challenge yourself to change your behavior and improve your skill in any area of your life. It's amplified when applied to an extreme sport.
    A lack of belief in your own potential can manifest itself in many ways: fear, nervousness, indifference even laziness. Understanding that you have the control and ability to consciously change your own actions is a very empowering fact that can unlock all levels of improvement. You have to commit to change.”

    -Maxine Tate: Canopy Piloting Instructor, Flight-1; US & UK National Champion; Coach Examiner; AFFI/Evaluator
    “I would cure this one thing that gets in students’ way: hubris. Assume you know nothing about the sport you are learning. No one assumes that they know everything about the sport they are learning, but the worst students just aren't really listening when the instructor is talking.
    In general, girls are better at listening than the boys. I think with the boys, especially with really good skydivers, there is a certain amount of ego that prevents accepting that there are things in BASE that they know nothing about. Think about this: almost EVERY BASE course that my partner Marta [Empinotti] and I teach, we learn something. This is because we know we don't know everything, so we keep our eyes and ears open, hoping to learn something new that we can analyze, assimilate and share with others in our beloved sport.”

    - Jimmy Pouchert: Co-Founder & Chief Instructor, APEX BASE; Freefly Coach
    “Over-amping. The ability to breathe even (especially) when scared, and to get into a focused zone before a jump, makes the biggest difference between a skydive that feels rushed and out of control and one in which a lot of learning and growth takes place. Even very experienced skydivers often feel nervous before their first wingsuit jump or when trying something new. The key is to trust that your ground preparation will serve you in the air, and to focus on one thing at a time starting with deep breaths, releasing tension, and visualizing the perfect exit.”

    - Taya Weiss, Owner/Head Instructor at Lightning Flight
    "We all have a tendency to look at the negative first, so I would remind all my students to start by pointing out three positive aspects about their previous skydive and then focus on one or two -- maximum, two -- areas of improvement. Positive reinforcement, combined with constructive criticism, goes a long way towards improving performance and attitude."

    - Lawrence de Laubadere: Freefly Coordinator, Lightning Flight Wingsuit & Freefly School
    “If I could cure all my students of one thing, it'd be expectation. As I tell them all, “If it's not fun, it's not worth it!” Learning to fly is not unlike so many other things in life: sex, making friends, etc. The harder you try, the harder it is.
    When I try to teach someone something in the tunnel, they often feel (natural) disappointment if they can't do it how they see others doing it. But it's not my goal to get you doing perfect layouts from the start. I'm looking for the components from my students: staying relaxed, looking where they should be, keeping the legs straight, etc. All I need them to do is smile, have fun, and keep making those baby steps. No expectations, no disappointment. In the end, I think attitude is one of the trickiest skills in progression.”

    -Dave Rhea: Instructor, Bodyflight Stockholm

    By nettenette, in Safety,

    What is In a First Aid Kit

    We all know that our sport can be dangerous and deadly when accidents occur. When they do occur the best defense is to be prepared to deal with the injuries that may be present. The local paramedics should be called right away but what if your DZ is isolated from the local town or maybe the injury is minor and does not need professional help.
    What sort of things should you have on your Drop Zone? Where should the first aid equipment be located? What involvement can the local rescue squad, fire department and police department have?
    All of these questions will be addressed.
    While one DZ with a trained medical professional may have first aid equipment items A, B, C, D and E. A local DZ without trained personnel may only have A and B. There are many things that can be useful in the case of an emergency but many medical supplies can be dangerous and deadly if you do not have the proper knowledge to use them.
    Every DZ should have a basic first aid kit. The kit should include bandages to control bleeding, ice packs for injuries, slings for upper extremity injuries, splints for fractures, ace wraps for sprains, sterile saline or hydrogen peroxide or isopropyl alcohol to clean cuts and abrasions.
    What else should you have? Shears or heavy scissors to cut off clothing, jump suits or rigs if the need arises. A watch with a second hand. This will allow you to accurately check the pulse or respirations per minute. A stethoscope and blood pressure cuff. These are fairly simple to use and you can learn quickly from a trained medical professional how to take an accurate blood pressure. A pen and notepad can be invaluable. They can be used to record the time of injury, pulse, respirations, blood pressure, phone numbers and also to mark where a pulse can be felt on an injured arm or leg.
    What else can be useful?
    There are many things that can be useful to someone trained in the medical field. Things that I have found useful at the DZ are oxygen tanks and masks, cervical collars and intravenous equipment to start fluid resuscitation to name a few. These are not things that should be used haphazardly and can be harmful if not used properly by trained medical professionals.
    However, if you are the DZO or ST&A; at a local DZ and have trained paramedics, nurses or physicians discuss with them what they would be comfortable having available in the event of emergency and have that equipment available to them.
    Where should you put the First Aid Kit
    The kit should be placed in a central location. It should be easily accessible and everyone that will be involved in the case of an injury should know its location. There is no point in having it locked in a locker or office if everyone has to go searching for the person with the key. At some larger DZ's there may realistically be a need for more than one first aid kit depending on the layout of the DZ.
    If you have a trained medical professional on the DZ and have supplies that should be used only by those with a medical license, separate the equipment. Have a central, accessible kit containing only basic equipment including bandages, ice packs, splints, etc. In a more secure location have a second first aid kit with more advanced equipment that will only be given to those who are trained to use it.
    Get People Involved
    For the past few years at Skydive Cross Keys the DZO has worked closely with the local fire department and rescue squad. Every spring the local departments come to the DZ with all of their equipment. On site at the DZ they practice extricating a skydiver from a tree and run drills with different accident scenarios.
    The fire and rescue personnel also get familiarized with skydiving equipment and learn first hand about the helmets, jumpsuits and rigs.
    Give your local squad a call and find out if they would be interested in doing similar drills at your DZ.
    Get the local authorities prepared if you are planning upcoming events at your DZ. If you have a boogie, competition or other large event planned let the local fire and rescue department know when the event will run and how many skydivers you expect. This allows the medical personnel to be prepared for injuries. Most large events that are held at my home DZ have an ambulance stationed at the DZ throughout most of the day.
    As the busy skydiving season approaches for many DZ's step back and evaluate if you are as prepared as you can be. Talk to local jumpers who are medically trained. Open up the old first aid kit that is on the DZ. Are there things that need to be replaced or added to make the kit complete? Call the local ambulance or fire department and invite them to come to the DZ, practice their drills and receive an introduction to the gear they might run into.
    Accidents do happen, and the best medicine is to be prepared when it happens.

    By admin, in Safety,

    Skydiving Glossary

    This glossary of skydiving terms accompanies the Student Skydiver's Handbook, by Bryan Burke.
    Click on the letter corresponding to the first letter of the word you are looking for:
    A B C D E F G H I
    J K L M N
    O P Q R S
    T UV W XYZ
     
    Return to the top of the Glossary to search for more words or just browse them alphabetically.
    The Letter A
    AAD. Automatic Activation Device. A device that senses rate of descent and altitude and which will attempts to mechanically activate the reserve parachute if the skydiver passes below a set altitude at a high rate of descent.
    A/C. Aircraft.
    Accuracy. Also known as Precision Landing, this is a competition discipline in which the skydiver attempts to land on an established target. At the National level the target is 3 cm in diameter, about the size of a quarter. Accuracy landings of various difficulty, from 20 meters to 2 meters, are required for USPA licenses. See the SIM for details.
    AFF. Accelerated Free Fall. An AFF student receives training on freefall jumps of 40 seconds or longer, accompanied by a qualified jumpmaster,
    as opposed to Static Line training which does not involve long freefall in the initial training phase.
    AGL. Above Ground Level. Altitudes are in reference either to Ground Level of Sea Level (see MSL). Skydivers always use AGL when referring to
    altitude.
    Airspeed. The speed of a flying object through the air, commonly used in reference to aircraft or canopies.
    Altimeter. A device indicating altitude.
    Angle of attack. The angle at which the wing is presented to the apparent wind. With square parachutes this changes when the brakes are
    applied.
    Angle of incidence. The angle at which a canopy is trimmed to glide through the air.
    Apparent wind. The wind perceived by an observer. See relative wind.
    ASP. Skydive Arizona's version of AFF, the Accelerated Skydiving Program includes two tandem jumps and an enhanced version of the AFF
    syllabus.
    ASTRA. An AAD made by FXC Corporation.
    Aspect ratio. The ratio of a canopys width (side to side) to breadth (front to back). Seven cell canopies typically have an aspect ratio of about 2.2 to one, while nine cell canopies are usually between 2.8 and 3.0 to one.
    The Letter B
    Backslide. To move backward in freefall relative to a neutral reference. Usually unintentional and undesirable, caused by poor body position.
    Bag. The deployment bag in which the canopy is packed.
    Base. The core around which a formation skydive is built. Can be a single person or a group of people, depending on the number of skydivers involved.
    BASE jump. A jump made from a fixed object rather than an aircraft. BASE is an acronym for building, antennae, spans (bridges) and earth
    (cliff).
    Beech. Short for Beechcraft, an aircraft manufacturer. Usually used in reference to a Beech D-18, a.k.a. Twin Beech. At one time these were common skydiving planes, but they are becoming obsolete.
    BOC. Bottom of Container. Refers to the location of the pilot chute. An increasingly common position for main deployment devices, as opposed to belly or leg mounted.
    Body position. Ones freefall body posture. Variations in body position are what make a wide range of freefall maneuvers possible.
    Boogie. A gathering of skydivers, usually focused on fun rather than competition. Big drop zones host several boogies a year, often on long holiday weekends.
    Bounce. To land at unsurvivable speed. Also to frap, or go in.
    Box man. A neutral, face to earth body position in which the arms form right angles at shoulder and elbow, and the legs are spread at about 45 degrees from the long axis and bent 45 degrees at the knees. Generally considered the ideal position for Formation Skydiving.
    Brakes. The brake lines of the canopy are synonymous with steering lines. Used together, they slow the parachute. Used independently they result in a turn.
    Break off. To cease formation skydiving by tracking away from the formation prior to deployment.
    Bridle. The thin webbing strap from the pilot chute to the top of the canopy. Part of the deployment system which consists of pilot chute, bag and bridle.
    BSR. Basic Safety Requirements. BSRs are USPA guidelines. They do not have force of law but are generally regarded as excellent minimum safety standards.
    Burble. The area of turbulence behind an object going through the air, whether a person in freefall or a canopy in flight.
    The Letter C
    Call. The time remaining until you are to board the aircraft. For example, a fifteen minute call means you will board in fifteen minutes.
    Canopy. The construction of fabric and lines used to land safely after a freefall. Usually used in conjunction with a type reference (round, square, zero-p, main or reserve).
    Cascade. The point where two lines join together so they run smoothly into one. Cascading the suspension lines results in reduced bulk and drag.
    Cell. Square canopies are made up of pressurized cells, usually seven or nine. Each cell consists of a load bearing rib at each side to which the suspension lines are attached. A third, non load bearing rib runs down the middle of the cell. The cell is pressurized through the open mouth at the front and also through cross ports in the ribs. Adjacent cells share load bearing ribs.
    Center point. The point around which movement takes place. In an individual the center point is considered to be in the middle of the torso. In a group, it is the point that the formation centers around.
    Cessna. An aircraft manufacturer. Single engined Cessnas such as 180s, 182s and 206s are the workhorse of smaller drop zones, carrying four to six jumpers.
    Chute assis. French for sit flying, or freefalling with one's seat presented to the relative wind.
    Closing loop. The small loop that holds the flaps of the container closed once the pin has been guided through the loop.
    Coach. A skydiver with some formal training in the art of instructing freefall technique.
    Container. The element of the parachute that houses the canopies. Technically, the Harness/Container but usually just referred to as the container.
    Crabbing. A canopy is crabbing when it is flown at an angle sideways to the ambient wind, resulting in a path across the ground that is sideways as well as forwards.
    Creep. To creep is to practice formation skydiving sequences while laying prone on a creeper.
    Creeper. A board equipped with wheels on which a skydiver lays to simulate freefall maneuvers.
    Cross ports. Holes in the ribs of a cell that allow air to flow from one cell to another.
    Current. To "be current" is to have jumped recently enough to retain proficiency in the sport. Uncurrent skydivers, depending on their experience, must be supervised to some degree when they resume jumping. See the SIM.
    Cut away. To release the main parachute, cutting away is a standard emergency procedure prior to deploying the reserve. More properly known as a breakaway, the technique did involve using a simple release system activated by pulling a handle.
    CRW. Canopy Relative Work, now officially known as Canopy Formations. CRW involves flying open canopies in close formation, where the pilots actually take grips on each other's parachutes.
    CYPRES. A type of AAD. Made by AirTech of Germany, this is the most common type of AAD and the first modern design to be widely adopted by expert skydivers.
    The Letter D
    DC-3. A type of aircraft, the Douglas DC-3 is a large, twin engined airplane capable of carrying over 40 jumpers. Like the Twin Beech, DC-3s are being rapidly replaced by more modern turbine engined aircraft.
    De-arch. To flatten out or reverse one's body position from the normal arched box man. A de-arch results in a slower fall rate than an arch.
    Dacron. A common construction material for canopy suspension lines. Dacron lines are thicker and softer than so called "microlines".
    Data card. Every parachute carries a data card with information on the reserve parachute, including type, last date packed, owner, serial number, etc.
    Dead spider. Slang for de-arch.
    Decision altitude. The altitude at which a skydiver is trained to begin execution of emergency procedures. Usually 2,500 feet AGL for students, and 1,800 feet for expert skydivers.
    Deployment system. The components of the parachute that control deployment of the canopy. Includes pilot chute, bridle and bag.
    Dirt dive. To rehearse a skydive on the ground.
    Dive floater. A dive floater is a skydiver who is inside the airplane in the exit line up, but leaving prior to the base. This configuration only occurs on large formations.
    Dive loops. Many advanced skydivers have loops or "blocks" on their front risers to make it easy to grip the front risers for steering purposes. Also called front riser loops.
    Diver. Anyone diving out of the plane during a formation skydiving exit.
    Door jam. To practice an exit in the aircraft door of a mock up of it prior to the skydive.
    DOS - Double or Dual Action System
    Down plane. A CRW formation with two canopies, both pointed toward the ground. This can also occur to a single skydiver with both main and reserve deployed.
    Drop zone. Common slang for a skydiving center, also DZ.
    Dytter. A brand of audible altimeter.
    The Letter E
    Elliptical. A wing shape characterized by a tapering leading and trailing edge so that the middle of the canopy is wider, front to back, than the ends. This configuration is typical of many high performance canopies.
    End cell. The cell furthers out on a canopy.
    Exit weight. The total weight of the jumper and all equipment and clothing.
    The Letter F
    F-111. A fabric common in mid range canopies, F-111 is slightly permeable to air and wears faster than zero-p fabric. Pronounced "F one eleven".
    FAA. The Federal Aviation Administration is the agency of the US government that regulates aviation activity, including skydiving.
    FAI. Federation Aeronautique International. The international organization governing air sports.
    FARs. Federal Aviation Regulations, the laws governing aviation.
    Fall rate. The speed at which a skydiver falls. Matching fall rate is essential to successful formation skydiving. This is done with jumpsuits, weights and body position.
    Finger trap. A method of installing a loop in a brake line without producing rough spots on the lines, the finger trap is accomplished by sliding one line into the other. The loop serves as a method of setting brakes in the desired position for the parachutes deployment.
    Flare. The act of pulling down the brakes of the canopy in order to slow it down, resulting in an increased angle of attack and reduced descent rate.
    Floater. Skydivers who leave the airplane before the base are called floaters since they must use a slow fall rate to get up to the base. Floating also refers to an exit position outside the airplane.
    Freestyle. A type of skydiving characterized by acrobatic individual flying, reminiscent of gymnastics.
    FS. Formation Skydiving, formerly known as relative work. In FS, skydivers attempt to go through a predetermined sequence of freefall formations.
    Formation. 1) A freefall skydiving formation of more than one jumper. 2) A flight of more than one jump plane.
    Funnel. A funnel occurs when one or more skydivers find themselves in an unstable body position and end up in a skydivers burble. The resulting loss of stability for the other skydivers usually causes the formation to break up.
    FXC. A company manufacturing AADs. One FXC design is common on students but considered by many to be unsuitable for expert skydivers. A new FXC design, the ASTRA, went on the market in the spring of 1996 and is relatively unknown.
    The Letter G
    Glide ratio. The distance a canopy flies forward compared to down. A canopy with a 3:1 glide ratio flies three feet forward for every foot of vertical descent.
    GPS. Global Positioning System. By picking up signals from satellites, a GPS receiver can tell the user position over the ground. Used in skydiving aircraft to spot the exit.
    Grips. Using the hands to hold onto another skydiver in freefall or during the aircraft exits. In formation skydiving, the formations are scored as complete when every skydiver has taken the correct grips.
    Grippers. Hand holds built onto formation skydiving jumpsuits to make it easier to take grips.
    Ground speed. The speed of an airplane or skydiver over the ground, as opposed to through the air.
    The Letter H
    Hand deploy. To activate the parachute by manually deploying the pilot chute as opposed to pulling a ripcord.
    Harness/container. The webbing and fabric holding the main and reserve canopies to the skydiver.
    Heading. The direction an aircraft, skydiver, or parachute is facing. The ability to recognize and maintain heading is crucial to jumping
    with others successfully. "On" or "off" heading are terms commonly used to describe exits and deployments.
    Holding. When a parachute is flying directly into the ambient wind, it is said holding. See running and crabbing.
    Hook knife. A small knife carried in the jumpsuit or on the parachute harness, the hook knife is designed to cut lines or webbing. A small razor blade is recessed in a hook shaped handle to prevent unintentional cuts.
    Hook turn. A turn of 90 degrees or more executed close to the ground. Because of the high risk associated with this maneuver, hook turns have an unfavorable connotation.
    Hot fuel. When the airplane does not shut down during fueling. Do not board the aircraft while fueling is in progress.
    The Letter I
    In date. A reserve packed within the previous 120 days is said to be "in date". If more than 120 days have elapsed since the reserve was packed it
    is"out of date" and illegal to use.
    Instructor. Someone who has held a USPA jumpmaster rating for at least one year and passed an Instructor Certification Course.
    IPC. The International Parachuting Commission oversees sport parachuting. It is a committee of the FAI.
    The Letter J
    Jump run. The flight path taken by the jump plane to put the skydivers in position over the airport.
    Jumpsuit. A cover all type garment designed for specific skydiving applications such as FS, freestyle or accuracy.
    Jumpmaster. Someone who has successfully attended a USPA Jumpmaster Certification Course. A jumpmaster has all of the privileges of an Instructor except that they cannot supervise a first jump course, sign off licenses, or manage a student program without an instructor's supervision.
    The Letter K
    Key. A signal to move on to the next step in a skydive.
    King Air. A turbine aircraft made by Beechcraft and common in medium sized drop zones.
    The Letter L
    Line of flight. An imaginary line corresponding to the jump plane's path over the ground, the line of flight is a useful reference line on larger formation
    skydives. Also, during the jump run the skydivers will be distributed along this line of flight.
    Log book. Like pilots or sailors, skydivers log their activity and achievements in order to document their experience.
    LORAN. A navigational system similar to GPS except based on ground transmitters, LORAN is relatively obsolete.
    The Letter M
    MSL. Mean sea level. Used by pilots when defining altitude, MSL refers to feet above sea level as opposed to above the ground. Pilots always use MSL when referring to altitude.
    Main. The primary parachute.
    Manifest. 1) The list of skydivers on the jump plane. 2) The act of going to the office where this list is maintained to put yourself on a plane. 3) The location where manifesting takes place.
    MARDS - Main Activated Reserve Deployment System
    Microline. A modern type of suspension line considerably smaller than dacron line.
    The Letter N
     
     
    The Letter O
    Organizer. Someone with leadership skills and skydiving expertise who plans formation skydives.
    Otter. The DeHavilland Twin Otter, a very popular turbine jump ship carrying up to 23 jumpers.
    Out landing. Landing off target.
    Out of date. See in date.
    The Letter P
    Packing data card. See data card.
    Peas. Pea gravel, used in the landing area as a target reference and because it is forgiving of hard landings.
    Pin. 1) The skydiver who first gets to the base. Base/pin are the two people around which many formations are built. 2) The act of docking
    on the base. 3) The closing pin of the main or reserve container, which should both be checked prior to jumping.
    Pit. The pea gravel area.
    Pilot chute. A small, round parachute that acts as a drogue to extract the main parachute from the container and deploy it.
    PLF. Parachute landing fall. A technique used to minimize injury during rough landings, a PLF distributes the landing shock along feet, calves, thighs, hip and shoulder.
    Porter. A single engined turbine aircraft carrying up to ten jumpers.
    Post dive. Review of a skydive after everyone has landed.
    PRO rating. A USPA rating indicating competence to perform difficult demonstration jumps.
    Pull out. A type of hand deploy pilot chute where the pilot chute is packed inside the container and pulled out using a handle with a lanyard to the pilot chute.
    Pull up cord. A piece of cord or line used to pull the closing loop through the grommets of the container.
    Pud. Slang for the handle on a pull out pilot chute system.
    The Letter Q
     
     
    The Letter R
    RSL. Reserve static line. This is a line from the main risers to the reserve cable. In the event the main is cut away, it may pull the reserve pin.
    Note: this system is only effective in malfunctions where the main is at least partially deployed.
    RW. Relative work, the term used to describe formation skydiving until a change in nomenclature made by the International Parachuting Commission in the early 90s.
    Relative wind. The apparent wind felt by a jumper in freefall, relative wind is the result of the skydiver's speed through the air.
    Reserve. The auxiliary parachute carried on every intentional parachute jump.
    Rip cord. The deployment system on all reserves and most student parachutes. The ripcord is a piece of cable with a handle at one end and a pin at the other. When pulled, the pin comes out of the closing loop holding the container shut, and the pilot chute is released.
    Rig. Skydiver slang for the entire parachute, including main and reserve canopies and the harness/container.
    Rigger. Someone with a certificate from the FAA stating they have successfully met the requirements to be a parachute rigger.
    Rigger's certificate. The certificate possessed by a rigger as proof of competence. Senior riggers may make minor repairs and pack reserve and main parachutes. Master riggers may make major repairs and alterations as well as packing parachutes.
    Risers. The webbing that connects the harness to the suspension lines. At the bottom of the risers will be a mechanism for attaching and releasing the risers and harness, usually in the form of a three ring release. On the rear risers are the brakes/steering lines. The suspension lines attach to the top of the risers with connector links, also known as rapid links.
    Round. 1) A formation where each skydiver has grips on the arms of those next to him, also known as a star. 2) A round parachute, as opposed to a modern ram-air "square" parachute.
    Running. When a canopy is flying with the ambient wind it is said to be running. This produces the greatest possible ground speed.
    The Letter S
    S&TA. Safety and Training Advisor. The S&TA is a volunteer representative of USPA who attempts to disseminate information about safety and act as a liaison between the DZ and USPA. Most S&TAs hold instructor ratings.
    SCR. The oldest award for formation skydiving achievement, for those who have been in a star of at least eight people in which each person left the aircraft separately and flew to the formation.
    SIM. Skydiver's Information Manual. Published by the USPA, the SIM is a comprehensive manual on USPA policies and training methods. It also
    includes FARs pertinent to skydiving.
    SOS. Single Operation System. This system simplifies emergency procedures by combining the functions of the cut away and reserve handles in a
    single handle.
    Seal. Reserve parachutes have a small lead seal on a piece of red thread around the closing pin. This seal indicates the reserve has not been
    opened since it left the riggers hands.
    Sentinel. A type of AAD.
    Single operation system. See SOS.
    Skygod. Although on the surface this term refers to a superior skydiver, in drop zone use skygod is a derogatory term for a skydiver whose ego has grown faster than his skydiving ability.
    Slider. A rectangular piece of nylon fabric with a grommet at each corner through which the canopy's suspension lines are routed. Packed at the top of the lines, the slider controls the opening of the canopy by preventing the parachute from expanding too rapidly.
    Slot. A position in the skydive or on the plane. Uses: "dock in your slot", or "two slots left on the next Otter".
    Spectra. A material from which microline is made.
    Spot. The position of the aircraft when the jumpers exit. Spotting duties (selecting the spot) can be done by a skydiver or the pilot.
    Square. A ram air parachute as opposed to a round parachute.
    Stabilizer. The vertical strips of cloth depending from the end cells of the canopy. Stabilizers improve the canopy's ability to fly straight ahead and enhance efficiency by reducing tip vortices.
    Stall. When the angle of attack of a wing becomes too high to sustain lift, the wing is said to be stalled.
    Static line. In static line deployments the parachute deployment system is attached to the airplane, with a cord ten to fifteen feet long, resulting in deployment immediately after exit.
    Steering lines. The lines that run from the steering toggles on the rear risers to the trailing edge of the parachute.
    Steering toggles. Handles attached to the end of the steering lines to facilitate their use. Toggles and lines are configured so they can be stowed in a partially down position to enhance the opening of the parachute.
    Stow. To neatly arrange suspension lines on the deployment bag or steering toggles in their keepers.
    Style. A type of freefall competition where an individual skydiver attempts to execute a predetermined sequence of maneuvers in the shortest
    possible time.
    Suspension lines. The lines from the risers to the canopy. They are normally in four groups, labeled from front to back as A, B, C and D. They can be further divided into right and left or front and back riser groups, and by type of material.
    Swoop. 1) To dive down to a formation or individual in freefall. 2) To aggressively approach the landing area in order to produce a long, flat flare and an exciting landing.
    The Letter T
    TAF - Tandem Accelerated Freefall where the 1st 3 or 4 stages are done on tandem and then the AFF one on one jumps are done as per the standard AFF program.
    Tandem. Parachute jumps in which two skydivers, usually an instructor and student, share one parachute system. The student is in a separate harness that attaches to the front of the instructor's harness.
    Terminal velocity. The speed at which drag matches the pull of gravity, resulting in a constant fall rate. Typical terminal velocity for formation skydiving is in the 120 to 135 mile per hour range, but speeds as high as 300 miles per hour have been reached.
    Three ring. A parachute release mechanism that utilizes three rings of separate size in a mechanical advantage system. Invented by Bill
    Booth in the late 70s, the three ring release is almost universally considered the best cut away system available.
    Throw out. A deployment method in which the pilot chute is stowed in a pouch on the belly, leg of bottom of container.
    Toggles. Handles on the steering lines.
    Track. To assume a body position that creates a high forward speed. Used to approach or depart from other skydivers in freefall.
    TSO. Technical Standard Order. A technical standard that all American parachutes must meet before they can be marketed. Unless specifically
    exempted by the FAA, a parachute must have a TSO placard to be legal.
    Turn around load. When the aircraft does not shut down between loads, but lands and picks up skydivers for immediate departure.
    The Letters UV
    Uppers. The upper winds, or winds at exit altitude. The "uppers" are often much stronger and occasionally from a different direction than ground winds.
    USPA
    The United States Parachute Association is a non profit skydiver's organization. USPA offers guidance and assistance to skydivers in training, government relations, competition, and many other fields. Most drop zones require USPA membership of individual skydivers because such membership includes third party liability insurance.
    The Letter W
    Wave off. Prior to deployment a skydiver should make a clearly defined arm motion to indicate to others nearby that he is about to open his parachute. A good wave off is essential to the avoidance of deployment collisions.
    WDI. Wind drift indicator. A paper streamer thrown from the jump plane to estimate winds under canopy and determine the spot.
    Weights. Many lighter skydivers wear a weight vest to allow them to maintain a fast fall rate.
    Wuffo. Skydiver slang for people who don't jump, from "Wuffo you jump out of them planes?"
    Wind line. An imaginary line from the desired landing area, extending directly along the direction the wind is blowing.
    Winds aloft. See uppers.
    Wing loading. The ratio of weight born by a wing to its surface area. In the US, divide your exit weight in pounds by the square footage of
    the canopy.
    The Letter XYZ
    Zero-p. Common slang for a type of fabric relatively impermeable to air. The less air that flows through the fabric wing of a ram air parachute, the more efficiently it flies.
     
     

    By admin, in Safety,

    What To Do When the Wind Picks Up

    As a student skydiver you are guided by your instructors, drop zone management and USPA's Basic Safety Requirements (BSR's) as to the maximum winds allowable for you to safely jump. However, after you graduate from student status and become a USPA "A" license holder, there is no requirement or recommendation concerning wind speeds. And after you purchase your own gear, drop zone management will no longer need to worry about the gear that you are renting from them. From that point on, the decision to jump or to stay on the ground will be a decision that you will be making for yourself.
    The following article describes some of the things to consider when you find that someone has turned the big fan on "high".
    Before the Jump:
    You will find that the maximum winds to jump in is a very individual decision and depends on the jumper's experience, attitude, main canopy size and type, and reserve canopy type. Do not base your decision on what you see more experienced jumpers do because their situation is different, and do not allow yourself to be talked into jumping in winds that are not appropriate for your level of experience and your gear.
    It does however help to watch more experienced jumpers land when you are deciding whether or not to jump yourself. Watching someone that is your weight and has similar gear will give you a good idea of what to expect on your landing, assuming the wind does not increase any further.
    In addition to getting the wind speed in miles per hour from a wind meter or other source, you can go to the landing area and observe the winds for a while, noting in particular the gustiness present in that area. With experience you will be able to judge the wind that you can jump in by how the wind feels.
    Sometimes a lull in the wind may fool you into thinking that the winds have subsided enough to safely jump, but you should observe the winds for at least 5 minutes before coming to that conclusion because another period of increased wind and gusts may follow a lull.
    If you in fact decide to make a jump when the winds are strong, protect yourself in the event that some unexpected problem arises by wearing adequate head protection and foot protection.
    After Opening:
    After your canopy opens and you have begun to fly back to the landing area is the time when you may first begin to realize that the wind has picked up or is much stronger than you were prepared for. As soon as you realize that this has happened, get turned into the wind and check your speed across the ground. If you are backing up there is a good chance that the wind is also very high on the ground. If you have a reserve static line system (RSL) on your rig you may want to disconnect now in the event that you have to release your main canopy.
    Pulling down on your front risers will increase your forward speed and may help you make it back or at least keep you from backing up as far, but using your front risers also increases your rate of descent, so you will have to use your best judgement as to whether this is really helping you or not.
    If you do not think that you will make it back to the normal landing area, this is the time to make sure that wherever you do land will be a large clear area. It is especially important not to land behind anything like a tree line or a building. The stronger the winds are, the more turbulence is generated downwind of large obstacles like these. It may be necessary to turn and fly far downwind to get to a suitable area.
    Approach to landing:
    As you get closer to the ground there will probably be slightly less wind, but it will be more turbulent, especially if the terrain is anything but completely flat. Your canopy will be more stable if you hold partial brakes. Your arms can act like "shock absorbents" by relaxing some of the tension on the brakes when the gusts come along.
    Holding some brakes will cause your canopy to fly slower and may even cause you to back up, but this may be better than risking having your canopy collapse. At this point you will be comforted by knowing that you have planned ahead well enough to have chosen to land in a large field with a lot of room behind you in which to back up.
    Landing:
    It is usually recommended that you not front riser or turn sharply near the ground when there is turbulence present. This has been known to cause canopies to collapse.
    Smaller canopies are much more sensitive to small steering changes and to gusts so concentrate on keeping the canopy directly into the wind.
    You may not need to flare as much as when there is less wind but you must still flare. The main thing to avoid is flaring fully just as a gust occurs. A gust could create enough extra lift to make you go up suddenly and then let you down hard when the gust subsides. Use your judgement and your feel of the canopy to determine just how much to flare and prepare for a parachute landing fall (PLF).
    After landing:
    The best advice that can be given here is what we have heard many times as students: Pull down on one toggle, and keep pulling it in until you have canopy in your hand, then run around to the downwind side of you canopy.
    Even if you have a good landing it is still possible for your canopy to stay inflated and to pull you over and onto the ground. You can usually prevent this by quickly turning around and running downwind with the canopy while it is deflating. If you begin to fall down after landing do not reach out with your hands to break your fall because of the possibility of injuring your arms. Concentrate instead on getting your canopy deflated and do a PLF if necessary, or let the seat of your jumpsuit take the action.
    If it has become extremely windy or gusty when you land and you are certain that you will not be able to land without being dragged you have one last resort, and that is to pull your cutaway handle to release your main canopy. This of course assumes that you have disconnected the reserve static line (RSL) system and that you are not jumping a single operation system (SOS) that pulls the reserve handle at the same time you cutaway.
    Do not let your fear of re-connecting your canopy prevent you from releasing it if you really need to. It is not a big deal to release your canopy and it is not very hard to properly re-connect it to your rig. You or your rigger probably do it every reserve repack anyway to test the release system. Quite often a canopy that is released in this manner will land with the risers laying out across the canopy and can be easily straightened out. You may even be able to re-connect it right where you land. Just be sure to have the release system inspected by a rigger and do a good line check before packing.
    If you decide to release your main canopy, the best time to do it is when you find yourself off balance and know you are going to fall down. If you do this promptly you will simply fall down and not be dragged. You may not even get very dirty! However, if you wait until you are being dragged across the ground by your canopy you may be dragged into a position where you cannot reach your cutaway handle.
    Once you are being dragged, you are in very bad situation and must do whatever is necessary to get the canopy under control. At this point you will be glad to know that you planned ahead well enough to not be upwind of a paved surface or a barbed wire fence.
    After everything is finally under control be sure to gather up your canopy tightly to prevent the wind from re-inflating it. Remember, the jump is not over until you are back in the packing area with your gear off.
    In Your Spare Time:
    Read your canopy owner's manual! It has a wealth of information in it and contains information on your canopy's flight characteristics. Some manufacturers even have advice on flying your canopy under adverse conditions.

    By admin, in Safety,

    How to survive the WFFC

    It's summer again, and that means the summer boogies are in full swing. Big groups of jumpers are getting together at this and other boogies througout the world, jumping like crazy, trying new equipment and disciplines, and partying all night. While they can be a lot of fun, boogies also present some unique risks and dangers that we have to keep in mind if we want to make it through the summer without injury. Presented below are some tips to help keep you alive and jumping at the biggest skydiving boogie in the world.
    1. Do only one new thing at a time. Many jumpers show up and are awed by the array of canopy demos, big ways, new planes (with new exits) and new styles of flying. Indeed, the WFFC is a great place to try new gear and jump new planes. But showing up, grabbing a demo rig with a tiny main, getting on a new type of airplane, and trying head down for the first time is not such a good idea. Want to try a new rig? Great! But first make a few jumps with your old rig. See if the canopy traffic near the landing area is OK with you. If it gets a little too intense, you're still in good shape, because you are familiar with your canopy, and are in a better position to handle lots of traffic. After your first few jumps on your current canopy, you can make a better decision whether a smaller canopy is a good idea, or if you want to land that smaller canopy in an alternate (i.e. larger, lower traffic) area.
    2. Make small changes. If you do decide to jump that demo rig, talk to the folks at the canopy tent and get a canopy they recommend. I would hesitate to downsize more than one canopy size at a time at the WFFC, no matter how good you think you are. Put a few jumps on each size or style of canopy before going on to a more aggressive one, so you have some experience you can fall back on if the next landing doesn't go as well.
    3. Know who you're jumping with. You're generally not going to know everyone on the dive, but at least make an effort to not to jump with all unknowns. Skydiving is still small enough that your friends probably know their friends, so ask around to determine their skill level. Ask them how many jumps they have, but be aware that this isn't always indicative of skills, and people sometimes lie about their number of jumps (which is really stupid.) The WFFC organizers are a good resource here, since they have a lot of experience matching people and planning safe dives. Even if you don't want to jump with them, you can ask them for recommendations on other people. Chances are one of the LO's knows them or has jumped with them at some point.
    4. Jump with a clear head. The WFFC has some excellent parties. But if you were up all night, it might be a good idea to get a little sleep before jumping. Adrenalin can't always make up for a hangover or a lack of sleep, and you need all your wits about you when you're
    in the air at the WFFC.
    5. Plan your outs. The main landing area by manifest is popular, but a lot of people have gotten hurt trying to land there. If dense canopy traffic worries you, land somewhere else. Also, if you open and you think you may not make it back to the main landing areas, pick your outs at 2000 feet, not at 50 feet. You don't have too many options left at that altitude.
    6. Learn to flat turn and flare turn. This is really important. You will be in big crowds of jumpers flying back. At some point, someone will cut you off. If it happens at 50 feet you have three choices: make a hard toggle turn (and plow into the ground at a painful speed) run into them or flat turn away. If it happens at ten feet, or after you have begun your flare, you have even fewer options. So be sure you can both flat turn (turn with minimal loss of altitude, using both brakes) and flare turn (turn right and left in the flare) before you get put in a position where you need those skills.
    7. Plan your opening altitude and stick to it. At the WFFC, it can be dangerous to open high, since the next plane may be coming along on the same jump run just a few minutes later. There are some aircraft/loads that allow higher openings; check with manifest if you need a higher opening altitude to try out a new canopy (for example.)
    The WFFC can be a dangerous place. But with a little planning and some common sense, you can spend your time at Rantoul jumping and partying rather than taking that "other" helicopter ride.

    By admin, in Safety,

    Surviving the No Wind Landing

    One of the most dreaded conditions of all is the no wind scenario. This fear is so profound that many jumpers in fact avoid jumping in no wind conditions. Although landing with the benefit of a headwind is unarguably easier, there are specific methods that markedly improve the chances of standing up your landing. Here are a few tips that will help you to land softer and safer when the wind goes away:
    1) Make sure you level off within touching distance from the ground. If you finish the flight with some space between you and the earth, you will have more than just forward speed to deal with at the end of the landing. All parachutes stall above zero airspeed, which means that as soon as the extreme slow flight capability of your parachute is attained, it will drop you into the ground with both forward and vertical movement. The best way to deal with this is to be sure that you have already arrived at standing height when the stall breaks. That way, the only remaining kinetic energy is forward movement, which can be diminished by taking a few controlled steps.
    2) Make sure your brakes are short enough. Most manufacturers set the brake lines to allow for a certain amount of slack so that when the front risers are applied with the toggles in the hands, there is no tail input. This, coupled with shorter risers (most parachutes are set up for 21 inch risers), will prevent you from reaching your parachute's slowest flying speed. With the help of your rigger, shortening the brake lines is an easy task. Take out not more than one inch at a time and give it a few jumps before taking more out.
    3) Keep the parachute over your head. Any tilt in the roll axis will result in a premature stall of the parachute, which will drop you into the ground while you still have ground speed. This is due to an effect known as "load factor". When a wing is in a bank, it requires a bit of increased angle of attack to keep it flying at the same height or descent rate. This results in an increased relative weight, which in turn increases the stall speed. Keep your eyes looking down the "runway" and you will be able to notice variance in your bank angle easier. Making smooth corrections to the bank angle all the way to the end of the landing will result in a softer touch-down and less forward velocity at the end of the ride.
    4) Be sure that you are finishing the flare. Keep smoothly adding brakes until you run out of arms, or ground-speed, whichever comes first. In other words, if you are flying into a significant head-wind, flaring all the way down will make you go backwards, as the speed of your parachute will be less than the speed of the wind. Flaring straight down is the only way to accomplish a complete flare, as stylish outward sweeping of the arms out to the sides or to the back will only result in a stylishly ineffective flare. The brake lines can only work if they are pulled.
    5) Assuming that a PLF is not necessary, put one foot under your spine, as the "main landing gear", and the other out in front as the "nose gear". That way you will not plant both feet at the same time and pivot onto your face. Slide your main gear along the ground as long as you can, and then when the friction finally grabs your foot, take that first step onto the front foot.
    6) Loosen your chest strap and lean forward in the harness. This will allow you to get your weight over your "landing gear", rather than back on your heels. The parachute will increase its pitch angle as you progress through the landing, but your body doesn't have to tilt in accordance. Freeing your body from the pitch of the system will allow you to feel more comfortable finishing the flare, as you will not feel the urge to let up on the toggles as you put your feet down to get to a more balanced pitch angle.
    7) Let the wing sink down below standing height during the second half of the swoop, and then use the canopy's lift to bring you back up to standing height. Referred to as the "Seagull Landing", this allows you to arrest any excess forward speed, as you will be in a climb at the last part of the landing. Be sure not to climb above standing height as you do this, as that will result in a drop at the end that will put you on your face.
    8) Practice slow flight up high. The more comfortable you are with the low-end range of your canopy's performance envelope, the longer you will be willing too keep your toggles down at the end. Fear of the stall results in incomplete flares, as well as letting up the toggles at the end of the landing. Keep the canopy in brakes for at least 30 seconds (up high), and perform smooth turns right and left. This will help you fly your way out of any bank angle created by an asymmetrical level off during the flare.
    9) Believe it is possible to land perfectly. It is. Only when a pilot thinks: "I am going to crash" is the crash inevitable.
    10) Get video! There is no greater tool than actually seeing yourself land. The best way to get filmed, I have found, is to film other people.
    Landing in no wind can be great fun. Ultimately, this is how we counter the fear of landing our parachutes. If you lean forward into the experience, your positive body language results in more fluid, appropriate actions that actually improve your situation. When you are comfortable with landing in no winds, you begin to actually look forward to those zero-wind sunset loads. Scooting across the ground with maximum forward speed can be incredibly enjoyable when you know you have the skills to handle the situation.
    In the end, the only way to achieve this is to jump on a regular basis, and enjoying the learning process is how this is reinforced. Find something about every landing that you can smile about, even your crashes. Everything that is not the path shows us where the path is not.
    Happy Landings!
    Bryan Germain
    www.CanopyFlightInstructor.com
    Editors Note: Also see - Another Look at No-Wind Landings by Scott Miller

    By admin, in Safety,

1 1