Example of a spot calculation from the weather winds data

by André Lemaire

AL 2009

Airplane and jumper data			
Airplane speed at exit	80 kts		
Terminal velocity	120 mph		
Exit altitude	10500 pieds		

Winds Data

Altitude	Speed	Provenance
(feet)	(kts)	
12000	28	350^{0}
9000	21	320^{0}
6000	15	280^{0}
3000	12	260^{0}
0	10	255^{0}

Intervals and elapsed time in freefall

Intervals	from	to	=	El. time (s)
1	10500'	9000'	1500'	12
2	9000'	6000'	3000'	17
3	6000'	3000'	3000'	17
4	3000' *	0'	3000'	180

* 3000' is the opening altitude

The jumper exposure time to the airplane speed (flying against the wind at exit altitude) is known to be about 5 seconds. In other word, after 5 seconds, the forward horizontal speed of the jumper is zero. In this case the jumper exits at 10500' and the airplane ground speed is therefore $80 - \frac{28 + 21}{2} = 55.5$ kts. 55.5 kts = 93.8 feet/s then the average jumper forward speed during those 5 seconds will be $\frac{93.8}{2}$ ft/s : and the corresponding forward drift will be : $\frac{93.8}{2} \times 5 = 234$ feet (to be substracted from the first vector-distance calculated of the 10500' to 9000' interval)

Trefuge vectors distance of the while dupsed times					
Intervals	Average speeds (kts)	Average provenance	Avrage direction	El.time (s)	
1	28 + 21 - 24.5	350 + 320 - 335	335 - 180 = 155	12	
2	$21+15$ _ 18	320 + 280 - 300	300 - 180 = 120	17	
		$\frac{1}{2} = 300$			
3	15 + 12 - 135	280 + 260 - 270	270 - 180 = 90	17	
		$\frac{1}{2} = 270$			
4	12+10	260 + 255 257 5	257.5 - 180 = 77.5	180	
	$\frac{1}{2} = 11$	$\frac{1}{2} = 237.3$			

Average vectors-distance of the wind and elapsed times

Vectors-distance						
Vectors	Speeds	directions	Speeds	El. Times	Distances	directions
	(kts)		(feet/s)	(s)	(pieds)	
V _{d1}	24.5	155^{0}	41.405	12	496.86	155 ⁰
V _{d2}	18	120^{0}	30.42	17	517.14	120^{0}
V _{d3}	13.5	90^{0}	22.815	17	387.855	90 ⁰
V _{d4}	11	77.5°	18.59	180	3346.2	77.5°

We have to substract 234 feet from V_{d1} because of the effect of the airplane speed on the jumper ie : 496.86 - 234 = 262.86 feet which gives the following table :

Vectors-distance with correction for the airplane ground speed

Vectors	Distances (feet)	directions
V _{d1corrected}	262.86	155^{0}
V _{d2}	517.14	120^{0}
V _{d3}	387.855	90^{0}
V_{d4}	3346.2	77.5°

The addition of those 4 vectors-distance gives the following resulting vector-distance:

 $V_{dR} = 4219.82 \, feet \rightarrow 86.91^{\circ}$ (calculated with the HP48GX graphing calculator)

Then the spot is at 4220 feet (a) 267° ($87^{\circ} + 180^{\circ}$)

Note 1 : The resulting vector-distance must be drawn in magnitude and direction on a map with the vector arrow placed on the landing target. The origin of this vector represents the projection of the exit point on the ground.

Note 2 : The graphing calculator HP48GX can get a program to do this calculation in a fraction of a second if we provide it with the data of the winds, of the airplane and of the jumper in an appropriate way.